K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

\(3,\\ A=1-8x^3+8x^3-8=-7\\ B=\left(3x-y\right)\left(9x^2+3xy+y^2\right)+x^3+y^3-27x^3\\ B=27x^3-y^3+x^3+y^3-27x^3=x^3\)

Bài 4: 

a: Ta có: \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)

\(\Leftrightarrow x^3-25x-x^3-8=17\)

\(\Leftrightarrow-25x=25\)

hay x=-1

b: Ta có: \(8\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)-4x\left(2x^2-x+1\right)+2=0\)

\(\Leftrightarrow8x^3-1-8x^3+4x^2-4x+2=0\)

\(\Leftrightarrow2x-1=0\)

hay \(x=\dfrac{1}{2}\)

26 tháng 8 2015

5 phút nữa mk quay lại .

21 tháng 7 2018

Gọi thương của phép chia F(x) cho Q(x) là  A(x)

Theo bài ra ta có:    \(F\left(x\right)=x^4+ax^3+b=\left(x^2-1\right).A\left(x\right)\)

                                              \(=\left(x-1\right)\left(x+1\right).A\left(x\right)\)

Do giá trị của biếu thức trên luôn đúng với mọi x nên lần lượt thay  \(x=1;\)\(x=-1\)ta được:

\(\hept{\begin{cases}a+b+1=0\\-a+b+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=0\\b=-1\end{cases}}\)

     Vậy....

21 tháng 7 2018

Gọi thương của 2 đa thức trên là : R(x)

\(\Rightarrow x^4+ax^3+b=\left(x^2-1\right)R\left(x\right)\)

\(\Rightarrow x^4+ax^3+b=\left(x-1\right)\left(x+1\right)R\left(x\right)\)

Vì đẳng thức trên đúng với mọi x nên cho x = 1 và x = -1 ta có :

\(\hept{\begin{cases}x=1\Rightarrow1+a+b=0\Rightarrow a+b=-1\\x=-1\Rightarrow1-a+b=0\Rightarrow a-b=1\end{cases}}\)

\(\Rightarrow a=\left(1+-1\right):2=0\)

\(b=0-1=-1\)

8 tháng 6 2017

mk thi song roi bn a

8 tháng 6 2017

bn ko nên đăng câu hỏi linh tinh

ai có chung cảm nghĩ với mk thì kb nha

a: (x+2)(x-3)>0

nên x+2;x-3 cùng dấu

=>x>3 hoặc x<-2

b: (x-1)(x+4)<=0

nên x-1 và x+4 khác dấu

=>-4<=x<=1

23 tháng 6 2016

= (x+2y)^2

\(=x^2+2.x.2y+\left(2y\right)^2\)

\(=\left(x+2y\right)^2\)

T mik mik T laij cho