Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
A = 112009 + 112008 + 112007 +.....+112001 + 112000
A = ( 112009 + 112008 + 112007 + 112006 + 112005) + (112004 + 112003 + 112002 + 112001 + 112000)
A = 112005(114 + 113 + 112 + 111 + 1) + 112000(114 + 113 + 112 + 111 + 1)
A = 112005.16015 + 112000.16105
=> A \(⋮\) 5
=> đpcm
Tk nha
ta có :
A=112009 + 112008 + ... + 112001 + 112000 ( có 10 số hạng )
A=(112009 + 112008 + 112007 + 112006 + 112005) + (112004 + 112003 + 112002 + 112001 + 112000) (có 2 nhóm)
A= 112005(114+113+112+11+1)+ 112000(114+113+112+11+1)
A=112005.16105+112000.16105
\(\Rightarrow A⋮5\)
đpcm
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
Ta có : \(A=\frac{11^{2007}+1}{11^{2008}+1}=\frac{11\left[11^{2007}+1\right]}{11^{2008}+1}=\frac{11^{2008}+11}{11^{2008}+1}=\frac{11^{2008}+1+10}{11^{2008}+1}=1+\frac{10}{11^{2008}+1}\)
\(B=\frac{11^{2008}+1}{11^{2009}+1}=\frac{11\left[11^{2008}+1\right]}{11^{2009}+1}=\frac{11^{2009}+11}{11^{2009}+1}=\frac{11^{2009}+1+10}{11^{2009}+1}=1+\frac{10}{11^{2009}+1}\)
Đến đây bạn tự so sánh nhé
Ta có: B = 11^2008+1/11^2009+1 < 11^20087 +1 + 10/11^2009+1+10 = 11^2008+11/11^2009+11 = 11(11^2007 +1)/11(11^2008+1) = 11^2007 +1/11^2008+1 = A
=>B <A
Vậy A > B
1) gọi hai số chẵn liên tiếp là 2n và 2n+2 ( với n là số tự nhiên)
=> tích của hai số tự nhiên liên tiếp:
2n(2n+2)=2n[2(n+1)]=4n(n+1)
ta thấy: 2n(2n+1)\(⋮\)2 ; 4n(n+1)\(⋮\)4
=> 2n(2n+2)\(⋮\)8
vậy tích của hai số chẵn liên tiếp thì chia hết cho 8
Sửa lại:
Ta có: \(A=\frac{11^{2007}+1}{11^{2008}+1}\Rightarrow11A=\frac{11^{2008}+11}{11^{2008}+1}=1+\frac{10}{11^{2008}+1}\)
\(B=\frac{11^{2008}+1}{11^{2009}+1}\Rightarrow11B=\frac{11^{2009}+11}{11^{2009}+1}=1+\frac{10}{11^{2009}+1}\)
Vì \(\frac{10}{2^{2008}+1}>\frac{10}{11^{2009}+1}\Rightarrow1+\frac{10}{2^{2008}+1}>1+\frac{10}{11^{2009}+1}\)
\(\Rightarrow11A>11B\)
\(\Rightarrow A>B\)
Ta có: \(A=\frac{11^{2007}+1}{11^{2008}+1}\)
\(\Rightarrow11A=\frac{11^{2008}+11}{11^{2008}+1}=1+\frac{10}{11^{2008}+1}\)
\(B=\frac{11^{2008}+1}{11^{2009}+1}\)
\(\Rightarrow11B=\frac{11^{2009}+11}{11^{2009}+1}=1+\frac{10}{11^{2009}+1}\)
Vì \(\frac{10}{11^{2008}+1}< \frac{10}{11^{2009}+1}\Rightarrow1+\frac{10}{11^{2008}+1}< 1+\frac{10}{11^{2009}+1}\)
\(\Rightarrow11A< 11B\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
c, 1/3-1/4+1/4-1/5+........+1/50-1/51
= 1/3-1/51
= 16/51
d, (đề bài)
= 1/1.5+1/5.9 +.........+1/97.101
=1/1-1/5+1/5-1/9+.....+1/97-1/101
=1/1-1/101
= 100/101
d, \(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{97.101}\)
\(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(\frac{4}{11}< \frac{x}{20}< \frac{5}{11}\)
=> \(\frac{80}{220}< \frac{11x}{220}< \frac{100}{220}\)
Suy ra \(11x\in B\left(11\right)\)mà \(80< 11x< 100\)nên \(11x\in88;99\)
Suy ra \(x\in8;9\)
ta thấy 112009có cs tận cùng là 1
112008 ; 112007 ; ....;112000 cũng như vậy
\(\Rightarrow11^{2009}+11^{2008}+....+11^{2000}\)
\(\Rightarrow\overline{.....1}+\overline{....1}+......+\overline{........1}\)
mà dãy số trên có 10 số
\(\Rightarrow A=\overline{.......1}\times10\)
\(\Rightarrow A=\overline{.......10}⋮5\)
Vậy \(A⋮5\)
cái này t chỉ biết là dùng đồng dư thôi nhưng lớp 6 chắc chưa học