K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

(x-1)(x+2)(x+3)(x+6) 
= [(x-1)(x+6)].[(x+2)(x+3)] 
=(x^2+5x-6)(x^2+5x+6) 
=(x^2+5x)^2 -6^2 = (x^2+5x)^2 -36 
vì (x^2+5x)^2 > hoặc bằng 0 => (x-1)(x+2)(x+3)(x+6) > hoặc bằng -36. 
Dấu bằng xảy ra khi (x^2+5x)^2=0 <=> x=0 hoặc x= -5

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

13 tháng 10 2017

(x-1)(x+2)(x+3)(x+6) 
=[(x-1)(x+4)][(x+2)(x+3)] 
=(x^2+5x-4)(x^2+5x+4) 
=(x^2+5x)^2-36>=-36 
=>min=-36<=>x=0 hoặc x=-5

13 tháng 10 2017

bạn làm sai rồi

8 tháng 11 2018

\(Takoco:\)

\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

\(=\left[\left(x\right)\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)

Đặt t=x2+3x

Mặt khác:

A cũng chỉ có thể có 1 hay 3 thừa số là số âm để *

A đạt Min 

Mặt khác A cũng không thể là số âm vì

Nếu có:

Như * => tích có ths 0\(A=t.\left(t+2\right)\Rightarrow minA\Leftrightarrow t=0\Rightarrow A=0\)

8 tháng 11 2018

\(A=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

\(A=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)

\(A=\left(x^2+3x\right)\left(x^2+3x+2\right)\)

\(A=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)\)

\(A=\left(x^2+3x+1\right)^2-1^2\)

\(A=\left(x^2+3x+1\right)^2-1\ge-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x^2+3x+1=0\)

Vậy Amin = -1 <=> x2 + 3x + 1 = 0

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

\(x^2+2x+5\)

\(=x^2+2.x.1+1+4\)

\(=\left(x+1\right)^2+4\ge4\)

Min \(=4\Leftrightarrow x+1=0\Rightarrow x=-1\)