K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

Ta có : M = 3 - 32 + 33 - 34 + .... + 32017 - 32018 + 32019

=> 3M = 32 - 33 + 34 - 35 + .... + 32018 - 32019 + 32020

Lấy 3M cộng M ta có : 

3M + M = (3 - 32 + 33 - 34 + .... + 32017 - 32018 + 32019) + (32 - 33 + 34 - 35 + .... + 32018 - 32019 + 32020)

4M = 3 + 32020 

Lại có 2x + 15 + 32020 = 4M

<=> 2x + 15 + 32020 = 3 + 32020

=> 2x = - 12

=> x = - 6

Vậy x = - 6

Bài:1 chứng minh các phân số sau tối giản với nthuoojc z1,     3n-2/4n-3   2,     4n+1/6n+1   Bài:2 cho a;b thuộc z chứng minh a,  6a+11b :a+7b:31         b,    5a+2b:179a+7b:17Bài 3 tìm số x,y biết1,  3/x+y/x+5/6      2,   5/x-y/3=1/6Bài 4 a, tìm x nguyên để các biểu thức đạt giá trị nhỏ nhất1,  A=(x+1)^2+2019         2, B+ giá trị thuyệt đối (2x+6)-2001b, Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất1,...
Đọc tiếp

Bài:1 chứng minh các phân số sau tối giản với nthuoojc z

1,     3n-2/4n-3   2,     4n+1/6n+1   

Bài:2 cho a;b thuộc z chứng minh a,  6a+11b :a+7b:31         b,    5a+2b:179a+7b:17

Bài 3 tìm số x,y biết

1,  3/x+y/x+5/6      2,   5/x-y/3=1/6

Bài 4 a, tìm x nguyên để các biểu thức đạt giá trị nhỏ nhất

1,  A=(x+1)^2+2019         2, B+ giá trị thuyệt đối (2x+6)-2001

b, Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất

1, A=2020-(x+3)^2020     2, B=2019-gíá trị tuyệt đối (2018-x)       3, C=2/(x-3)^2+5       4, D=3/ gía trị thuyệt đối  (x+2)+1

c, tìm giá trị nhỏ nhất của S=giá trị tuyệt đối (x+2)+giá trị tuyệt đối(2y-10)+2019

 

Các Bạn giúp mình mấy bài này nhé mình cảm ơn nhiều làm hết cho mình thì tốt quá mình cảm ơn^^

 

0
28 tháng 3 2021

ta có :\(E=\frac{2019^{2019}+1}{2019^{2020}+1}\Leftrightarrow2019\cdot E=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2019}{2019^{2020}+1}\)

\(F=\frac{2019^{2020}+1}{2019^{2021}+1}\Leftrightarrow2019\cdot F=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)

vì \(\frac{2019}{2019^{2020}+1}>\frac{2019}{2019^{2021}+1}\) nên E>F

28 tháng 3 2021

E=2019 x 2019 x 2019 x ........ x 2019 x2019 +1 /2019 x 2019 x 2019 x.........x 2019 x 2019 + 1

E=1+1/2019+1

E=2/2020

E=1/1010

F=2019 x 2019 x 2019 x .......... x 2019 x 2019 +1 / 2019 x 2019 x 2019 x ....... x 2019 x 2019 +1

F= 1+1/2019+1

F=2/2020

F=1/1010

từ đó ta có E=F(=1/1010)

21 tháng 3 2019

ta có: \(\frac{2018}{2019}>\frac{2018}{2019+2020};\frac{2019}{2020}>\frac{2019}{2019+2020}.\)

\(\Rightarrow A=\frac{2018}{2019}+\frac{2019}{2020}>\frac{2018}{2019+2020}+\frac{2019}{2019+2020}=\frac{2018+2019}{2019+2020}=B\)

....

25 tháng 4 2019

  Vì \(\frac{2018}{2019}\)< 1\(\Rightarrow\)\(\frac{2018}{2019}\)>\(\frac{2018}{2019+2020}\)

  Vì\(\frac{2019}{2020}\)< 1\(\Rightarrow\)\(\frac{2019}{2020}\)>\(\frac{2019}{2019+2020}\)

\(\Rightarrow\)\(\frac{2018}{2019}\)+\(\frac{2019}{2020}\)>\(\frac{2018}{2019+2020}\)+\(\frac{2019}{2019+2020}\)=\(\frac{2018+2019}{2019+2020}\)

\(\Rightarrow\)A>B

Bài 2: 

Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)

\(\Leftrightarrow16x+40=90+30\)

\(\Leftrightarrow16x=80\)

hay x=5

5 tháng 10 2021

Bài 1 :

[( 35 - 5 ) : 3 ]3 + 3

= [30 : 3]3 + 3

= 103 + 3

= 1000 + 3

= 1003

Đây nha bạn!!!

Chúc bạn học tốt!!!hihi

Ta có:

\(A=\frac{4-7^{2020}}{7^{2020}}+\frac{5+7^{2021}}{7^{2021}}\) và \(B=\frac{1}{7^{2019}}\)

Ta xét 2 trường hợp:

\(TH1:\frac{4-7^{2020}}{7^{2020}}=\frac{-7^{2020}+4}{7^{2020}}=-1+\frac{4}{7^{2020}}\)

\(TH2:\frac{5+7^{2021}}{7^{2021}}=1+\frac{5}{7^{2021}}\)

\(\Rightarrow\left(-1+\frac{4}{7^{2020}}\right)+\left(1+\frac{5}{7^{2021}}\right)\)

\(\Rightarrow\frac{4}{7^{2020}}+\frac{5}{7^{2021}}\)

\(Do:\)

\(\frac{4}{7^{2020}}>\frac{1}{7^{2019}}\)

\(\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)

Nên:\(\frac{4}{7^{2020}}+\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)

\(\Rightarrow A>B\)

22 tháng 5 2019

đặt 22018 = a ; 32019 = b ; 52020 = c

Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)

\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)

\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)

\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)

\(B< \frac{3}{4}\)

\(\Rightarrow A>1>\frac{3}{4}>B\)

22 tháng 5 2019

Mình chỉ biết cách tính B thôi, đây nhé:

B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)

B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)