Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lý pytago =>DC=\(\sqrt{CB^2+DB^2}\)=\(\sqrt{15^2+20^2}\)=25
\(\widehat{HBD}\)+ \(\widehat{D}\)=900 \(\widehat{C}\)+\(\widehat{D}\)=900 => \(\widehat{C}\)=\(\widehat{HBD}\) =>\(\Delta\)HBD~\(\Delta\)BCD(gg)
=>\(\frac{HB}{BC}\)=\(\frac{HD}{BD}\)<=> \(\frac{HB}{15}\)=\(\frac{HD}{20}\)(1) Mặt khác: BC*BD=CD*BH=>BH=15*20/25=12
Thay vào (1) =>HD=12/15 *20=16 =>HC =9
ABCD là hình thang cân=> BH cũng chính là đường cao của hình thang
Đáy nhỏ AB dài là: 25 - 9 - 9 =7
Diện tích hình thang ABCD là:(7+25)*12/2=192(dvdt)
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân