Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x^3 - 5x^2 =0 <=> x^3 - 5x^2 = 0
<=> x^2.(x-5)=0
th1: x^2=0 => x=0
th2 x-5=0 => x=5
vậy x= 5; 0 là ngiệm
Chứng minh đa thức P(x) = 2(x-3)^2 + 5 không có nghiệm nha mấy chế
Tui viết sai đề :v
a) Ta có no của đa thức f(x) = 0
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)
b) Ta có no của đa thức g(x) = 0
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x.\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)
a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)
\(f\left(x\right)-g\left(x\right)=8x\)
\(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)
\(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)
b) 8x=0
=> x=0
=> Nghiệm đa thức f(x)-g(x)
c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :
\(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)
\(=6,75+9-9-2\)
\(=4,75\)
#H
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
\(2019x^2+x+2020=0\)
\(\Leftrightarrow2019\left(x^2+\frac{x}{2019}+\frac{2020}{2019}\right)=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4038}+\frac{1}{4038^2}+\frac{2020}{2019}-\frac{1}{4038^2}=0\)
\(\Leftrightarrow\left(x+\frac{1}{4038}\right)^2+\frac{2020\cdot8076-1}{4038^2}=0\)
\(\Leftrightarrow\left(x+\frac{1}{4038}\right)^2=-\frac{2020\cdot8076-1}{4038^2}\)(1)
Vì \(2020\cdot8076-1>0\Rightarrow\frac{2020\cdot8076-1}{4038^2}>0\)
\(\Rightarrow-\frac{2020\cdot8076-1}{4038^2}< 0\)(2)
Từ (1) và (2) suy ra đa thức vô nghiệm
\(\)
\(\left(2x-3\right)-\left(x-5\right)=\left(x+2\right)-\left(x-1\right)\)
\(2x-3-x+5=x+2-x+1\)
\(x+2=3\)
\(x=3-2\)
\(x=1\)
Gọi H(x) = - (1-x)^2 + 25
Để H(x) = 0
=> - (1 -x) ^2 + 25 =0
=> - (1-x) ^2 = -25
=> (1-x)^2 = 25
(1-x) ^2 = 5^2 = (-5)^2
=> 1-x = 5 => 1-x = -5
x = -4 x = 6
KL: x= -4; x= 6 là nghiệm của đa thức H(x)
Chúc bn học tốt !!
\(\frac{x}{2}\)=\(\frac{y}{-5}\)=\(\frac{x-y}{2-\left(-5\right)}\)=\(\frac{-7}{7}\) = -1 \(\Rightarrow\)x = -1 × 2 = -2 \(\Rightarrow\)y = -1 × -5 = 5
x/2=y/-5 và x-y=-7
x-y=-7 =>x=y-7 thế vào x/2=7/-5 được (y-7)/2=y/-5 =>y=5 =>x=-2
giả sử x2-x=0
=>x2-x=0
=>x(x-1)=0
=> _x=0
|_ x=1
Ngiệm là 0 với 1 bạn nhé