Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chúng tỏ rằng :
a) M = 4^10 - 2^18 chia hết cho 3
M = 4^10 - 2^18
M = ( 2^2 )^10 - 2^18
M = 2^20 - 2^18
M = 2^18 . 2^2 - 2^18 . 1
M = 2^18 . 4 - 2^18 . 1
M = 2^18 . ( 4 - 1 )
M = 2^18 . 3 chia hết cho 3
Vậy M chia hết cho 3
Đặt A=1+7+72+...+7101
=(1+7)+(72+73)+...+(7100+7101)
=8+72(1+7)+...+7100(1+7)
=8+72.8+...+7100.8
=8(1+72+...+7100)
\(\Rightarrow A⋮8\)
Vậy A\(⋮\)8
Ta có : A = ( 1 + 7 ) + ( 7^2 +7^3 ) + .... + ( 7^100 + 7^101 )
= 1( 1 + 7 ) + 7^2( 1+7 ) +.....+ 7^100( 1 + 7 )
= 1. 8 + 7^2 . 8 +....+ 7^100 . 8
= 8( 1+7^2+....+7^100 )
=> A chia hết cho 8
a 2001^2017 -1 chia hết cho 10
ta có 2001^ 2017 -1^2017 chia hết cho 10
ta thấy 2 số này có chung số mũ , ta lại có
2001-1=2000 ( 2000 chia hết cho 10)
ta chứng minh được 2001^2017 -1 chia hết cho 10
còn những câu khác bạn tự làm nha
34n sẽ có tận cùng bằng 1
(......1) - (.....6) = (......5) chia hết cho 5 (đpcm)
mình ghi lại đề nhé
Chứng tỏ rằng :
a, 1028 + 8 chia hết cho 72
b, 88 + 220 chia hết cho 17
c, 10n + 18n - 1 chia hết cho 27
d, 10n +72n - 1 chia hết cho 81
a) 1028 = (2.5)28 = 228.528 => 1028 chia hết cho 23 hay 1028 chia hết cho 8 => 1028 + 8 chia hết cho 8
Mà 1028 + 8 = 1000...08 có tổng các chữ số bằng 9 => 1028 + 8 chia hết cho 9
=> 1028 + 8 chia hết cho 8.9 = 72
b) 88 + 220 = (23)8 + 220 = 224 + 220 = 220.(24 + 1) = 220.17 chia hết cho 17 => 88 + 220 chia hết cho 17
c) 10n + 18n - 1 = (10n - 1) - 9n + 27n = 999...9 - 9n + 27n (Có n chữ số 9)
= 9.111...1 - 9n + 27n (Có n chữ số 1)
= 9.(111...1 - n) + 27n
Nhận xét: 111...1 có tổng các chữ số là 1+ 1 + 1+ ..+ 1 = n => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 9.3 = 27
Mà 27n chia hết cho 27
Nên 9.(111...1 - n) + 27n chia hết cho 27
Vậy....
d) 10n + 72n - 1 = (10n - 1) - 9n + 81n = 99...9 - 9n + 81n (Có n chữ số 9)
= 9.(11..1 - n) + 81n
Nhận xét: 111...1 có tổng các chữ số là n => 111...1 - n chia hết cho 9
=> 9.(11...1 - n) chia hết cho 9.9 = 81
Mà 81n chia hết cho 81
Nên 9.(11..1 - n) + 81n chia hết cho 81
Vậy...
a, \(10^m-1⋮19,19⋮19\)
\(\Rightarrow\left(10^m-1\right)\left(10^m+1\right)+19⋮19\)
\(\Rightarrow10^{2m}-1+19⋮19\Rightarrow10^{2m}+18⋮19\)
\(b,\)Ta có : \(3+3^2+3^3+3^4+...+3^{23}+3^{24}+3^{25}\)
\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{23}+3^{24}+3^{25}\right)\)
\(=3+3\left(3+3^2+3^3\right)+...+3^{22}\left(3+3^2+3^3\right)\)
\(=3+3.39+...+3^{22}.39\)
\(=3+39\left(3+...+3^{22}\right)\)
Suy ra : B chia 39 dư 3
Vậy : B không chia hết cho 39
a) \(A=1+2+3^2+....+3^{11}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)
\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)
\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)
b) \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)
c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)
Nhận thấy: tổng các chữ số của C chia hết cho 9 => C chia hết cho 9
3 chữ số tận cùng của C chia hết cho 8 => C chia hết cho 8
mà (8;9) = 1 => C chia hết cho 72
d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)
1033+8=10...000(33 chữ số 0)+8=10...008(32 chữ số 0) có:
+) Chữ số tận cùng 8 chia hết cho 2
+) Tổng các chữ số: 1+0+...+0+0+8=1+8=9 chia hết cho 9
Mà 2 & 9 nguyên tố cùng nhau
=> 1033+8 chia hết cho 18(2.9=18)
=> đpcm
Minh Hiền : viết thế này nhanh hơn . (2;9) = 1