K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

\(\frac{2021^3-1}{2021^2+2022}\)

\(\frac{\left(2021-1\right)\left(2021^2+2021.1+1^2\right)}{2021^2+2022}\)

\(\frac{\left(2021-1\right)\left(2021^2+2022\right)}{2021^2+2022}\)

\(=\left(2021-1\right)\)

\(=2020\)

19 tháng 4 2022

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2022}\)

\(\Rightarrow\dfrac{yz+zx+xy}{xyz}=\dfrac{1}{x+y+z}\)

\(\Rightarrow\left(yz+zx+xy\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz-xyz=0\)

\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(z=-x\).

-Đến đây thôi bạn, câu hỏi sai rồi ạ.

 

 

13 tháng 12 2022

Cứu với ;-;

20 tháng 12 2021

Chọn C

20 tháng 12 2021

C

9 tháng 9 2021

 GTNN của biểu thức : A= (x-1)^2021 + (x-2)^2022

Là   MAX A = 1  khi  \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

22 tháng 10 2019

Tổng = 4042 nha !!!

7 tháng 1 2022

Đặt \(\left(n+2021\right)=p\)

Đặt \(p^2+2022=k^2\)

\(\Rightarrow k^2-p^2=2022\)

\(\Rightarrow\left(k-p\right)\left(k+p\right)=2022\)

Đặt \(a=k-p;b=k+p\)

\(\Rightarrow a.b=2022\) (1) là 1 số chẵn => trong 2 số a; b phải có ít nhất 1 số chẵn (2)

Ta có \(a+b=k-p+k+p=2k\) là 1 số chẵn => a; b phải cùng chẵn hoặc cùng lẻ (3)

Từ (2) và (3) => a; b phải cùng chẵn

Đặt \(a=2m;b=2q\left(m;q\in Z\right)\)

Từ (1) \(\Rightarrow a.b=2m.2q=2022\Rightarrow4mq=2022\Rightarrow m.q=\frac{2022}{4}\)

Vì n là số nguyên => n+2021=p là số nguyên => k là số nguyên => a; b là số nguyên => m;q là số nguyên => m.q là số nguyên

Mà 2022 không chia hết cho 4 => m.q không nguyên mâu thuẫn với m.q là số nguyên

Nên không tồn tại số tự nhiên m để \(\left(n+2021\right)^2+2022\) là số chính phương

Hay \(\left(n+2021\right)^2+2022\) không là số chính phương \(\forall n\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{9^2-27}{2}=27$

$\Rightarrow a^2+b^2+c^2=ab+bc+ac$

$\Leftrightarrow 2(a^2+b^2+c^2)=2(ab+bc+ac)$

$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$

Mà $a+b+c=9$ nên $a=b=c=3$. 

Khi đó:

$(a-4)^{2021}+(b-4)^{2022}+(c-4)^{2023}=(-1)^{2021}+(-1)^{2022}+(-1)^{2023}$

$=(-1)+1+(-1)=-1$