K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

\(\dfrac{x}{2}=\dfrac{z}{3};\dfrac{y}{5}=\dfrac{z}{2}\Rightarrow\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}=\dfrac{x+y+z}{4+6+15}=\dfrac{50}{25}=2\Rightarrow x=8;y=12;y=30\)

2 tháng 2 2017

sai đề

2 tháng 2 2017

Phải là : y/(z+y+1)

15 tháng 8 2017

Ta có :*x(x+y+z) =   - 5 (1)

* y(x+y+z) = 9 (2)

* z(x+y+z)=5 (3)

Từ (1) ; (2) và (3) , ta có :

x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 + 5

Dựa vào tính chất phân phối của phép nhân đối với phép cộng , ta có :

 (x+y+z) . (x+y+z) = 9 

\(\Rightarrow\left(x+y+z\right)^2=9\)

\(\Rightarrow x+y+z=3\) hoặc x +y+z=-3

\(-\) TRƯỜNG HỢP  : x+y+z =3 :

 * từ (1) có :  x(x+y+z=3 ) = -5   và        x+y+z=3 => x = \(\frac{x\left(x+y+z\right)}{x+y+z}=-\frac{5}{3}\)

* từ (2) có : y(x+y+z) =9   và x+y+z=3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{3}=3\)

* từ (3) có : z(x+y+z) = 5 và x+y+z=3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{3}\)

\(-\) TRƯỜNG HỢP x +y+z=-3 :

* từ (1) có  x(x+y+z=3 ) = -5   và        x+y+z=-3 \(\Rightarrow x=\frac{x\left(x+y+z\right)}{x+y+z}=\frac{-5}{-3}=\frac{5}{3}\)

* từ (2) có : y(x+y+z) =9   và x+y+z=-3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{-3}=-3\)

 * từ (3) có : z(x+y+z) =5   và x+y+z=-3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{-3}\)

Đảm bảo đúng 100% . K MIK NHA MN!

15 tháng 8 2017

Đặt

\(x.\left(x+y+z\right)=-5\) (1)

\(y.\left(x+y+z\right)=9\)      (2)

\(x.\left(x+y+z\right)=5\)      (3)

Cộng (1);(2);(3) với nhau ta được 

\(x.\left(x+y+z\right)+y.\left(x+y+z\right)+z.\left(x+y+z\right)=\left(x+y+z\right).\left(x+y+z\right)\)

\(=\left(x+y+z\right)^2=\left(-5\right)+9+5=9=3^2=\left(-3\right)^2\)

Suy ra \(x+y+z=3\)hoặc \(x+y+z=-3\)

Thay \(x+y+z=3\)vào (1) ta được \(x.3=-5\Rightarrow x=-\frac{3}{5}\)

Thay\(x+y+z=3\)vào (2) ta được \(y.3=9\Rightarrow y=3\)

Thay \(x+y+z=3\)vào (3) ta được \(z.3=5\Rightarrow z=\frac{3}{5}\)

Ta có \(\left(x;y;z\right)=\left(-\frac{3}{5};3;\frac{3}{5}\right)\)

Thay \(x+y+z=-3\)vào (1) ta được \(x.\left(-3\right)=05\Rightarrow x=\frac{3}{5}\)

Thay \(x+y+z=-3\)vào (2) ta được \(y.\left(-3\right)=9\Rightarrow y=-3\)

Thay \(x+y+z=-3\)vào (3) ta được \(z.\left(-3\right)=5\Rightarrow x=-\frac{3}{5}\)

Ta có \(\left(x;y;z\right)=\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)

Vậy các cặp \(\left(x;y;z\right)\)thỏa mãn là : \(\left(-\frac{3}{5};3;\frac{3}{5}\right)\)và \(\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)

10 tháng 1 2021

\(\hept{\begin{cases}6x=10y=15z\\x+y+z=90\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{15}}\\x+y+z=90\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{15}}=\frac{x+y+z}{\frac{1}{6}+\frac{1}{10}+\frac{1}{15}}=\frac{90}{\frac{1}{3}}=270\)

\(\frac{x}{\frac{1}{6}}=270\Rightarrow x=45\)\(\frac{y}{\frac{1}{10}}=270\Rightarrow y=27\)\(\frac{z}{\frac{1}{15}}=270\Rightarrow z=18\)

10 tháng 1 2021

Thank bạn nhiều với cho mình hỏi tại sao lại đưa x/1/6; y/1/10; z/1/15 giúp mk với

13 tháng 4 2019

Í đầu bài là thế này à \(\frac{x-1}{2}=\frac{2y}{3}=\frac{z-3}{4}\)và \(x-2x+z=-10\)

Có đúng ko xem kĩ cái 

16 tháng 10 2018

Ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)

\(\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{3}\right)^2=\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}\)\(=\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

\(\Rightarrow x=9.5=45\)

     \(y=9.7=63\)

     \(z=9.3=27\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2023

Lời giải:
Theo bài ra ta có:

$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$

$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$

Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$

$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:

$3x^2-y^2+z^2=876$

$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$

$\Rightarrow 219k^2=876$

$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$

Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$

Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$

13 tháng 3 2018

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-16}{-80}=\frac{1}{5}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{5}.64=12,8\\y^2=\frac{1}{5}.144=28,8\\z^2=\frac{1}{5}.225=45\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\pm\sqrt{12,8}\\y=\pm\sqrt{28,8}\\z=\pm\sqrt{45}\end{cases}}\)

Với \(x=\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=\sqrt{28,8}\\z=\sqrt{45}\end{cases}}\)

Với \(x=-\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=-\sqrt{28,8}\\z=-\sqrt{45}\end{cases}}\)