K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 9 2021

\(\sum\dfrac{x^2}{y^2+yz+z^2}\ge\sum\dfrac{x^2}{y^2+\dfrac{y^2+z^2}{2}+z^2}=\dfrac{2}{3}\sum\dfrac{x^2}{y^2+z^2}\ge\dfrac{2}{3}.\dfrac{3}{2}=1\) (BĐT cuối là BĐT Netsbitt)

Câu b là bài IMO 2001 USA, em có thể tìm thấy rất nhiều lời giải

9 tháng 7 2021

\(P=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy}=\dfrac{1}{x^3+3x^2y+3xy^2+y^3-3xy\left(x+y\right)}+\dfrac{3}{3xy}\)

\(=\dfrac{1}{\left(x+y\right)^3-3xy}+\dfrac{3}{3xy}\)\(=\dfrac{1}{1-3xy}+\dfrac{3}{3xy}\)

áp dụng BDT Cauchy Scharwarz

\(=>P\ge\)\(\dfrac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=4+2\sqrt{3}\)

 

9 tháng 7 2021

Bn ơi dấu "=" xảy ra khi nào vậy ạ

13 tháng 12 2021

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

13 tháng 12 2021

Lm dùm mik bài dưới lun vs

NV
15 tháng 7 2021

Đây là 1 bài toán không giải được (người ra đề đã chọn 1 con số ngẫu nhiên dẫn tới kết quả phương trình điểm rơi không thể giải)

Dự đoán điểm rơi tại \(x=a;y=b;z=c\)

\(2\left(x^3+a^3+a^3\right)\ge6a^2x\)

\(2\left(y^3+b^3+b^3\right)\ge6b^2y\)

\(z^3+z^3+c^3\ge3cz^2\) 

Cộng vế:

\(2P+\left(4a^3+4b^3+c^3\right)\ge3\left(2a^2x+2b^2y+cz^2\right)\)

Ta cần tìm a, b, c sao cho:

\(\left\{{}\begin{matrix}2a+4b+3c^2=68\\\dfrac{2a^2}{2}=\dfrac{2b^2}{4}=\dfrac{c}{3}\\\end{matrix}\right.\) \(\Leftrightarrow2a+4.a\sqrt{2}+3.\left(3a^2\right)^2=68\)

\(\Leftrightarrow27a^4+\left(4\sqrt{2}+2\right)a-68=0\)

Đây là 1 pt bậc 4 không thể giải cho nên đây là 1 BĐT không thể giải.

Thông thường khi cho số liệu thì người ra đề phải tính trước các hệ số để ra 1 pt có thể giải chứ ko random kiểu ngớ ngẩn thế này

15 tháng 7 2021

ng đó xứng đáng bị ntn ạ?

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

$3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
$\Rightarrow x+y+z\geq 3$

Áp dụng BĐT AM-GM:

$\frac{y^2}{2}+\frac{1}{2}\geq y$

$\frac{z^3}{3}+\frac{1}{3}+\frac{1}{3}\geq z$

$\Rightarrow P+\frac{7}{6}\geq x+y+z=3$

$\Rightarrow P\geq \frac{11}{6}$

Giá trị này đạt tại $x=y=z=1$