![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
G = 2x2 - 3x + 1
G = 2x2 - 2x - x + 1
G = -( 2x2 + 2x ) - ( x + 1 )
G = -2x( x + 1 ) - ( x + 1 )
G = ( x + 1 )( -2x - 1 )
# Học tốt #
Bài làm
H = -x2 + 5x - 4
H = -x2 + 4x + x - 4
H = -( x2 - 4x ) + ( x - 4 )
H = -x( x - 4 ) + ( x + 4 )
H = ( x - 4 )( -x + 1 )
# Học tốt #
![](https://rs.olm.vn/images/avt/0.png?1311)
\(G=2x^2-3x+1=2x^2-2x-x+1\)
\(=2x\left(x-1\right)-\left(x-1\right)=\left(2x-1\right)\left(x-1\right)\)
\(H=-x^2+5x-4=-x^2+4x+x-4\)
\(=-x\left(x-4\right)+\left(x-4\right)=\left(1-x\right)\left(x-4\right)\)
\(I=x^2+4x+3=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)=\left(x+1\right)\left(x+3\right)\)
\(K=2x^2+7x+5=2x^2+2x+5x+5\)
\(=2x\left(x+1\right)+5\left(x+1\right)=\left(2x+5\right)\left(x+1\right)\)
\(L=-3x^2-5x-2=-3x^2-3x-2x-2\)
\(=-3x\left(x+1\right)-2\left(x+1\right)=\left(-3x-2\right)\left(x+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
G = 2x2 - 3x +1 = 2x2 -2x -x +1 =(x-1).(2x-1)
H = -x2 + 5x - 4 = -x2 + 4x +x-4 = (x-4).(1-x)
I = x2 + 4x + 3 = x2 + 3x + x + 3 =(x+3).(x+1)
K = 2x2 + 7x + 5 = 2x2 + 2x + 5x + 5 = (x+1).(2x+5)
L = -3x2 -5x -2 = -3x2 - 3x - 2x - 2 = -3.x(x+1) - 2.(x+1) = (x+1).(-3x-2)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2\left(x+5\right)-x^2-5x=0\)
\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
Vậy \(x\in\left\{-5;2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
xin lỗi mk mới học lớp 6 thui nên mk nghĩ x\(^2\)+ 5x là số đối của 5 để có tổng bằng 0
suy ra x\(^2\)+ 5x = -5
\(x^2+5x+5=0\)
\(\Leftrightarrow x^2+2.\frac{5}{2}.x+\frac{25}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\left(\sqrt{\frac{5}{4}}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{5}{2}+\sqrt{\frac{5}{4}}\right)\left(x+\frac{5}{2}-\sqrt{\frac{5}{4}}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{2}+\sqrt{\frac{5}{4}}=0\\x+\frac{5}{2}-\sqrt{\frac{5}{4}}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}-\sqrt{\frac{5}{4}}\\x=\frac{5}{2}+\sqrt{\frac{5}{4}}\end{cases}}\)
Vậy ...