Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Phương trình đã cho tương đương với ( -3z2 + 2iz = 0 ( 1) hoặc 5z2 - 6iz - 2 = 0 ( 2)
Giải : ta có
Suy ra
Do đó:
Chọn C.
Đặt t = z2 + z; Phương trình đã cho trở thành
Với
Với
Vậy phương trình đã cho có 4 nghiệm.
Chọn D.
Ta có: ( z2 + 3z + 6) 2 + 2z( z2 + 3z + 6) - 3z2 = 0
Hay ( z2 + 3z + 6) 2 + 2z( z2 + 3z + 6) + z2 – 4z2 = 0
[(z2 + 3z + 6) + z]2 - ( 2z)2 = 0
[z2 + 4z + 6 ]2 - ( 2z)2 = 0
Suy ra: (z2 + 4z + 6 - 2z) (z2 + 4z + 6 + 2z) = 0
Vậy nghiệm của phương trình là:
Đặt \(z_1=x+yi\Rightarrow z_2=x-yi\)
\(\Rightarrow z_1z_2=x^2+y^2\)
\(\left|z_1^2\right|+\left|z_2^2\right|=10\Leftrightarrow\left|\left(x+yi\right)^2\right|+\left|\left(x-yi\right)^2\right|=10\)
\(\Leftrightarrow\left|x^2-y^2+2xyi\right|+\left|x^2-y^2-2xyi\right|=10\)
\(\Leftrightarrow\sqrt{\left(x^2-y^2\right)^2+4x^2y^2}+\sqrt{\left(x^2-y^2\right)^2+4x^2y^2}=10\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+4x^2y^2=25\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=25\)
\(\Leftrightarrow x^2+y^2=5\)
Cho z1; z2; z3; z4 là các nghiệm của phương trình: (z2 +1) (z2 - 2z + 2) = 0 . Tính
A.5
B.4
C.-2
D.3
Chọn C.
PT
S= i2014+ ( -i) 2014+ ( 1-i) 2014+ (1+ i) 2014
= ( i2) 1007+ [(-i)2]1007+ (-2i) 1007+ (2i) 1007= -1-1+( -2) 1007. i1007+ 21007. i1007= - 2
Đáp án A
Phương pháp.
Giả sử Giả phương trình ban đầu để tìm được nghiệm z 1 , z 2 Sử dụng giả thiết để đánh giá cho cho b. Đưa về một hàm cho b và sử dụng ước lượng cho b ở phần trước để tìm giá trị nhỏ nhất của P.
Lời giải chi tiết.
Tính toán ta tìm được hai nghiệm
Giả sử . Từ ta suy ra
Áp dụng (1) ta nhận được
Do đó giá trị nhỏ nhất của là 2016 - 1
Đạt được khi và chỉ khi
⇔⎡⎢ ⎢ ⎢⎣z = √2(1−i)2z =√2(−1+i)2z= i
chúc bạn học tốt nha
⇔⎡⎢ ⎢ ⎢⎣z = √2(1−i)2z =√2(−1+i)2z= i
chúc bạn học tốt