K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

chúc bạn học tốt nha

 

chúc bạn học tốt

11 tháng 6 2017

Chọn  A.

 

21 tháng 8 2017

Đáp án B

Có 

5 tháng 11 2019

Đáp án C

14 tháng 12 2018

Chọn B.

Phương trình đã cho tương đương  với ( -3z2 + 2iz = 0 ( 1) hoặc 5z2 - 6iz - 2 = 0 ( 2)

Giải : ta có 

Suy ra 

Do đó: 

5 tháng 3 2017

Chọn C.

Đặt t = z2 + z; Phương trình đã cho trở thành

Với 

Với 

Vậy phương trình đã cho có 4 nghiệm.

2 tháng 11 2019

Chọn D.

Ta có: ( z2 + 3z + 6) 2 + 2z( z2 + 3z + 6) - 3z2 = 0

Hay ( z2 + 3z + 6) 2 + 2z( z2 + 3z + 6) + z2 – 4z2  = 0

[(z2 + 3z + 6) + z]2 - ( 2z)2 = 0

[z2 + 4z + 6 ]2 - ( 2z)2 = 0

Suy ra: (z2 + 4z + 6 - 2z) (z2 + 4z + 6 + 2z) = 0

Vậy nghiệm của phương trình là: 

27 tháng 8 2018

Đáp án D

NV
21 tháng 4 2023

Đặt \(z_1=x+yi\Rightarrow z_2=x-yi\)

\(\Rightarrow z_1z_2=x^2+y^2\)

\(\left|z_1^2\right|+\left|z_2^2\right|=10\Leftrightarrow\left|\left(x+yi\right)^2\right|+\left|\left(x-yi\right)^2\right|=10\)

\(\Leftrightarrow\left|x^2-y^2+2xyi\right|+\left|x^2-y^2-2xyi\right|=10\)

\(\Leftrightarrow\sqrt{\left(x^2-y^2\right)^2+4x^2y^2}+\sqrt{\left(x^2-y^2\right)^2+4x^2y^2}=10\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+4x^2y^2=25\)

\(\Leftrightarrow\left(x^2+y^2\right)^2=25\)

\(\Leftrightarrow x^2+y^2=5\)

4 tháng 6 2017

Chọn C.

PT

S= i2014+ ( -i) 2014+ ( 1-i) 2014+ (1+ i) 2014

= ( i2) 1007+ [(-i)2]1007+ (-2i) 1007+ (2i) 1007= -1-1+( -2) 1007. i1007+ 21007. i1007= - 2

29 tháng 9 2017

Đáp án A

Phương pháp.

Giả sử  Giả phương trình ban đầu để tìm được nghiệm  z 1 , z 2  Sử dụng giả thiết để đánh giá cho cho b. Đưa  về một hàm cho b và sử dụng ước lượng cho b ở phần trước để tìm giá trị nhỏ nhất của P.

Lời giải chi tiết.

Tính toán ta tìm được hai nghiệm

Giả sử . Từ  ta suy ra

Áp dụng (1) ta nhận được

Do đó giá trị nhỏ nhất của  là  2016 - 1

Đạt được khi và chỉ khi