Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2+5y^2+4xy=2023$
$\Leftrightarrow (x^2+4y^2+4xy)+y^2=2023$
$\Leftrightarrow (x+2y)^2+y^2=2023$
Ta biết rằng 1 scp khi chia cho $4$ dư $0$ hoặc $1$
Tức là $(x+2y)^2\equiv 0,1\pmod 4$ và $y^2\equiv 0,1\pmod 4$
$\Rightarrow (x+2y)^2+y^2\equiv 0,1,2\pmod 4$
Mà $2023\equiv 3\pmod 4$
Do đó không tồn tại $x,y$ nguyên để $(x+2y)^2+y^2=2023$
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;-3;1\right\}\)
Thế vào pt ban đầu tìm x nguyên tương ứng
\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)
Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)
Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)
Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)
Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)
Thay y=0 vào pt (1) ta không tìm được x nguyên
Thay y=-2 vào pt (1) ta không tìm được x nguyên
Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)
Thay y=-3 vào pt (1) tìm được \(x=-6\)
Thay y=1 vào pt (1) tìm được \(x=2\)
\(4x^2+4y-4xy+5y^2+1=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(2y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=-\frac{1}{2}\end{cases}}\)
+) \(x^2-4xy+5y^2=2\left(x-y\right)\Leftrightarrow x^2-2x\left(2y+1\right)+5y^2+2y=0\)
+) \(\Delta'=\left(2y+1\right)^2-5y^2-2y=-y^2+2y+1=-\left(y+1\right)^2+2\)
Do y nguyên và -(y+1)^2 >= -2 nên y+1 = 0, 1 hoặc -1 mà để delta chính phương thi y+1 = 1 hoặc -1 -> y = 0 hoặc -2
Từ đây thay lại vào và tìm được \(\left(x;y\right)\in\left\{\left(0;0\right)\right\}\)
\(x^2-4xy+5y^2=2\left(x-y\right)\)
\(\Leftrightarrow x^2-4xy+5y^2-2x+2y=0\)
\(\Leftrightarrow\left(x-2y\right)^2+2\left(x-2y\right)+1+y^2-2y+1=2\)
\(\Leftrightarrow\left(x-2y-1\right)^2+\left(y-1\right)^2=2\)
vì x,y là số nguyên nên ta có các trường hợp sau
th1: \(\hept{\begin{cases}x-2y-1=1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)
th2 \(\hept{\begin{cases}x-2y-1=-1\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
th3 \(\hept{\begin{cases}x-2y-1=-1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\end{cases}}}\)
th4 \(\hept{\begin{cases}x-2y-1=1\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}}\)
x^2 +5y^2 -4xy +2x +4 =0
x^2 +4y^2 -4xy +y^2 +4y+4 +2x -4y =0
(x -2y)^2 +2(x-2y)+(y+2)^2 =0
(x-2y+1)^2 +(y+2)^2 =1
do x,y nguyên nên x-2y+1; y+2 nguyên
mà (x-2y+1)^2 ;(y+2)^2 lơn hơn hoặc bằng 0 với mọi x,y
nên ta có 2TH
TH1: (x-2y+1)^2 =1 ;(y+2)^2 =0
TH2: (x-2y+1)^2 =0 ;(y+2)^2 =1
bạn tự giải doạn cuối nhé
k cho mình nhé
k mk nha
\(x^2-4xy+5y^2=2\left(x-y\right)\)
\(\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)
\(\left(x-2y-1\right)^2+\left(y-1\right)^2=1^2+1^2\)
\(\left(x-2y-1\right)^2=1\)
\(\left(y-1\right)^2=1\)
\(y-\left(1^2-1\right)\)
\(y=2\left|x=1\right|\)
Hmmm....không chắc há cậu mik làm kiểu cô giao nên không có 4 đâu hem :)))) ???
:)