K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ : \(\hept{\begin{cases}a>0\\a\ne4\end{cases}}\)

a)Ta có : \(P=\left(\sqrt{a}-\frac{4}{\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-2}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-2}\right)\)

\(=\left(\frac{a-4}{\sqrt{a}}\right)^2.\frac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{\left(a-4\right)^2}{a}.\frac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\)

\(=\frac{\left(a-4\right)^2}{a}.\frac{-8\sqrt{a}}{a-4}\)

\(=-\frac{8\left(a-4\right)}{\sqrt{a}}=-\frac{8\sqrt{a}\left(a-4\right)}{a}\)

b)Ta có : \(P=-\frac{8\sqrt{a}\left(a-4\right)}{a}=-24\)

\(\Leftrightarrow\frac{8\sqrt{a}\left(a-4\right)}{a}=24\)

\(\Leftrightarrow8\sqrt{a}\left(a-4\right)=24a\)

\(\Leftrightarrow a-4=3\sqrt{a}\)

\(\Leftrightarrow a-3\sqrt{a}-4=0\)

\(\Leftrightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-4\right)=0\)

\(\Leftrightarrow\sqrt{a}-4=0\)(do \(\sqrt{a}+>0\forall a>0\))

\(\Leftrightarrow\sqrt{a}=4\)

\(\Leftrightarrow a=16\left(TM\right)\)

15 tháng 12 2016

ko đc đăng câu hỏi bằng hình ảnh

18 tháng 12 2016

Kệ Người ta nhiều chuyện

 

6 tháng 8 2017

Bài 1 :

\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)

\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)

\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)

6 tháng 8 2017

Siêu quá, toán lớp 9 mà làm được rùi!

16 tháng 8 2017

Mọi người giúp mình với 2h mình đi học rùi

Bài 1: 

a: ĐKXĐ: x>0; x<>1

b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)

c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:

\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)

d: Để |A|>A thì A>0

=>\(\sqrt{x}-1>0\)

hay x>1

7 tháng 8 2017

\(\dfrac{\sqrt{12}-\sqrt{18}}{\sqrt{6}-3}-\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{2.6}-\sqrt{2.9}}{\sqrt{6}-3}=\dfrac{\sqrt{2}\left(\sqrt{6}-3\right)}{\sqrt{6}-3}=\sqrt{2}\)

\(\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\dfrac{2\sqrt{2.3}-\sqrt{2.8}}{\sqrt{3}-\sqrt{2}}=\dfrac{2\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=2\sqrt{2}\)

Vậy \(\dfrac{\sqrt{12}-\sqrt{18}}{\sqrt{6}-2}-\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\sqrt{2}-2\sqrt{2}=-\sqrt{2}\)

7 tháng 8 2017

\(\sqrt{11+4\sqrt{7}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}=\sqrt{\left(2+\sqrt{7}\right)^2}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2+\sqrt{7}+\sqrt{2}\)

Vậy \(\sqrt{11+4\sqrt{7}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\dfrac{3}{\sqrt{7}-2}=2+\sqrt{7}+\sqrt{2}-\dfrac{3}{\sqrt{7}-2}=\dfrac{\sqrt{2}\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=\sqrt{2}\)

16 tháng 8 2017

a, không nhìn rõ

b, \(\dfrac{a+2\sqrt{a}+1}{a-1}\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)

16 tháng 8 2017

đó đâu phải là hằng đẳng thức

24 tháng 8 2017

Lam cau C dung ko ? cau D) chua bt lam :V \

a) DKXD : x \(\ne\pm2\)

C)

Ta cos :

A = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

ma : A < \(\dfrac{5}{3}< =>\dfrac{\sqrt{x}+3}{\sqrt{x}-2}< \dfrac{5}{3}< =>3\left(\sqrt{x}+3\right)< 5\left(\sqrt{x}-2\right)< =>\) \(3\sqrt{x}+9< 5\sqrt{x}-10< =>-2\sqrt{x}< -19< =>\sqrt{x}>\dfrac{19}{2}=>x=\dfrac{361}{4}\)

Vay...............

24 tháng 8 2017

Trình độ còn non quá :v

d/ A = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\dfrac{5}{\sqrt{x}-2}\)

Để \(A\in Z\) \(\Rightarrow\dfrac{5}{\sqrt{x}-2}\in Z\)

\(\Rightarrow5⋮\sqrt{x}-2\) \(\Rightarrow\sqrt{x}-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{3;1;7;-3\right\}\)

\(\Rightarrow x\in\left\{9;1;49\right\}\)

22 tháng 11 2017

Đề 1: TỰ LUẬN

Câu 1: sin 60o31' = cos 29o29'

cos 75o12' = sin 14o48'

cot 80o = tan 10o

tan 57o30' = cot 32o30'

sin 69o21' = cos 20o39'

cot 72o25' = 17o35'

22 tháng 11 2017

- Chiều về mình làm cho nha nha vui Giờ mình đi học rồi thanghoa Bạn có gấp lắm hông leu

25 tháng 5 2017

3) Sửa ab+bc+ca/3 thành ab+bc+ca/2; Thêm đk: a;b;c > 0

Đặt \(A=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(A=\dfrac{\dfrac{1}{a^2}}{a\left(b+c\right)}+\dfrac{\dfrac{1}{b^2}}{b\left(c+a\right)}+\dfrac{\dfrac{1}{c^2}}{c\left(a+b\right)}\)

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

\(A\ge\dfrac{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\)

\(A\ge\dfrac{\dfrac{\left(bc+ac+ab\right)^2}{abc^2}}{2\left(ab+bc+ca\right)}=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)

Dấu "=" xảy ra khi a = b = c = 1

25 tháng 5 2017

còn phải làm bài nào ko hốt nốt