K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(VT=\left[\dfrac{\dfrac{sinx}{cosx}+sinx}{1+cosx}\right]^2+1\)

\(=\left[\dfrac{sinx\left(\dfrac{1}{cosx}+1\right)}{cosx\left(1+\dfrac{1}{cosx}\right)}\right]^2+1\)

=1/cos^2x=VP

8 tháng 4 2021

1.

\(1+tan\alpha+tan^2\alpha+tan^3\alpha\)

\(=1+\dfrac{sin\alpha}{cos\alpha}+\dfrac{sin^2\alpha}{cos^2\alpha}+\dfrac{sin^3\alpha}{cos^3\alpha}\)

\(=1+\dfrac{sin\alpha}{cos\alpha}+\dfrac{sin^2\alpha}{cos^2\alpha}\left(1+\dfrac{sin\alpha}{cos\alpha}\right)\)

\(=\left(\dfrac{sin^2\alpha}{cos^2\alpha}+1\right)\left(1+\dfrac{sin\alpha}{cos\alpha}\right)\)

\(=\dfrac{1}{cos^2\alpha}\left(1+\dfrac{sin\alpha}{cos\alpha}\right)=\dfrac{sin\alpha+cos\alpha}{cos^3\alpha}\)

8 tháng 4 2021

2.

\(\dfrac{1+tan^4x}{tan^2x+cot^2x}\)

\(=tan^2x.\dfrac{1+tan^4x}{tan^4x+cot^2x.tan^2x}\)

\(=tan^2x.\dfrac{1+tan^4x}{1+tan^4x}\)

\(=tan^2x\)

10 tháng 11 2021

\(c,A\left(-2;2\right)\inđths\Leftrightarrow-2a+b=2\left(1\right)\\ Đths//Ox\Leftrightarrow a=0;b=y\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow a=0;b=2\)

NV
19 tháng 3 2022

a.

\(d\left(A;d\right)=\dfrac{\left|4.\left(-3\right)-3.5+8\right|}{\sqrt{4^2+\left(-3\right)^2}}=-\dfrac{19}{5}\)

b. 

Do \(\Delta\perp d\) nên \(\Delta\) nhận (3;4) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(3x+4y+c=0\)

\(d\left(A;\Delta\right)=2\Leftrightarrow\dfrac{\left|-3.3+4.5+c\right|}{\sqrt{3^2+4^2}}=2\)

\(\Leftrightarrow\left|c+11\right|=10\Rightarrow\left[{}\begin{matrix}c=-21\\c=-1\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+4y-1=0\\3x+4y-21=0\end{matrix}\right.\)

c.

Do \(M\in\left(a\right)\) nên tọa độ có dạng: \(M\left(2m+1;m\right)\)

\(d\left(M;d\right)=\dfrac{\left|4\left(2m+1\right)-3m+8\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)

\(\Leftrightarrow\left|5m+12\right|=20\Rightarrow\left[{}\begin{matrix}m=\dfrac{8}{5}\\m=-\dfrac{32}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(\dfrac{21}{5};\dfrac{8}{5}\right)\\M\left(-\dfrac{59}{5};-\dfrac{32}{5}\right)\end{matrix}\right.\)

8 tháng 4 2021

\(P=tanx\left(\dfrac{1+cos^2x}{sinx}-sinx\right)\)

\(=tanx.\dfrac{1+cos^2x-sin^2x}{sinx}\)

\(=\dfrac{sinx}{cosx}.\dfrac{2cos^2x}{sinx}=2cosx\)