Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x^3-x^2+x-1=(x^3-x^2)+(x-1)\)
\(=x^2(x-1)+(x-1)=(x^2+1)(x-1)\)
2. \(6x^2y-2xy^2+3x-y=2xy(3x-y)+(3x-y)\)
\(=(3x-y)(2xy+1)\)
3. \(4x^2+1\) thì còn cái gì để phân tích hả bạn? Hay ý bạn là \(4x^4+1\)?
\(4x^4+1=(2x^2)^2+1=(2x^2)^2+1+4x^2-4x^2\)
\(=(2x^2+1)^2-(2x)^2=(2x^2+1-2x)(2x^2+1+2x)\)
4. \(x^2-9x+8=(x^2-x)-(8x-8)\)
\(=x(x-1)-8(x-1)=(x-1)(x-8)\)
5. \(x^3-2x^2y+3xy^2=x(x^2-2xy+3y^2)\)
6. \(x^2-6x+y-y^2\) (sai đề)
7. \(x^2-xy-2x+2y=(x^2-xy)-(2x-2y)\)
\(=x(x-y)-2(x-y)=(x-y)(x-2)\)
1.
a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)
b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)
2.
a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)
b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ
3.
\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)
4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)
\(A\ge\frac{7}{4}\)
Vậy GTNN của A là 7/4
Bài 3:
a) ta có: \(A=x^2+4x+9\)
\(=x^2+4x+4+5=\left(x+2\right)^2+5\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2
b) Ta có: \(B=2x^2-20x+53\)
\(=2\left(x^2-10x+\frac{53}{2}\right)\)
\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)
\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)
\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)
\(=2\left(x-5\right)^2+3\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5
c) Ta có : \(M=1+6x-x^2\)
\(=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3
Bài 2:
a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y+x-y\right)\)
\(=\left(x+y\right).2x\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
Chúc bạn học tốt!
a) \(x^2-3x+xy-3y\)
\(=x\left(x-3\right)+y\left(x-3\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
b) \(x^2+y^2-2xy-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y+5\right)\left(x+y-5\right)\)
c) \(4x^2-4xy+y^2=\left(2x-y\right)^2\)
m) \(81-x^2+2xy-y^2\)
\(=9^2-\left(x-y\right)^2\)
\(=\left(9-x+y\right)\left(9+x-y\right)\)
k) \(x^2-xy-x+y\)
\(=x\left(x-y\right)-\left(x-y\right)\)
\(=\left(x-1\right)\left(x-y\right)\)
\(x^2-y=y^2-x\Leftrightarrow x^2-y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\Rightarrow\orbr{\begin{cases}x=y\\x+y=-1\end{cases}}\)
loại x=y do \(x\ne y\)
\(A=\left(x+y\right)^2-3\left(x+y\right)=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)
Trước 1 bài nha
câu 3: \(x+y=2\Rightarrow x^2+y^2+2xy=4\Rightarrow20+2xy=4\left(x^2+y^2=20\right)\)
\(\Rightarrow2xy=-16\Rightarrow xy=-8\)
Mặt khác \(x+y=2\Rightarrow x^3+y^2+3xy\left(x+y\right)=8\Rightarrow x^3+y^3+3.\left(-8\right).2=8\left(xy=-8,x+y=2\right)\)
\(\Rightarrow x^3+y^3=8-\left[3.\left(-8\right).2\right]=56\)