Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để bpt luôn đúng với mọi \(x\in R\Leftrightarrow\left\{{}\begin{matrix}a=1>0\left(lđ\right)\\\Delta\le0\end{matrix}\right.\)
\(\Leftrightarrow9-4\left(m-2\right)\le0\)\(\Leftrightarrow m\ge\dfrac{17}{4}\)
Vậy...
d là khẳng định sai
Hai vecto \(\overrightarrow{a};\overrightarrow{b}\) không cùng phương nên không ngược hướng
Lời giải:
Theo công thức Herong:
\(S=\sqrt{p(p-a)(p-b)(p-c)}=\frac{1}{4}\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}\)
Do đó:
\(\frac{1}{4}(a+b-c)(a-b+c)=\frac{1}{4}\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}\)
\(\Leftrightarrow (a+b-c)^2(a-b+c)^2=(a+b+c)(a+b-c)(b+c-a)(c+a-b)\)
\(\Leftrightarrow (a+b-c)(a-b+c)=(a+b+c)(b+c-a)\)
\(\Leftrightarrow a^2-(b-c)^2=(b+c)^2-a^2\)
\(\Leftrightarrow 2a^2=(b-c)^2+(b+c)^2=2(b^2+c^2)\)
\(\Leftrightarrow a^2=b^2+c^2\)
Theo định lý Pitago đảo thì $ABC$ là tam giác vuông tại $A$.
Lời giải:
Theo định lý Talet:
\(\frac{AE}{EF}=\frac{AB}{CF}\Rightarrow \frac{AE}{AF}=\frac{AB}{AB+CF}=\frac{AB}{DC+CF}=\frac{AB}{DF}\)
\(\Rightarrow AE=\frac{AB.AF}{DF}\)
Do đó:
\(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{DF^2}{AB^2AF^2}+\frac{1}{AF^2}=\frac{1}{AF^2}.\frac{DF^2+AB^2}{AB^2}\)
\(=\frac{1}{AF^2}.\frac{DF^2+AD^2}{AB^2}=\frac{1}{AF^2}.\frac{AF^2}{AB^2}=\frac{1}{AB^2}\)
(đpcm)
10.D
Giải thích: Số chính phương là những số có chữ số tận cùng là 0,1,4,5,6,9.
Giả sử (2) là mệnh đề đúng: chữ số tận cùng của n là 4
Xét vào (1) thì là mệnh đề sai vì số tận cùng của n là 4 + 8 = 2 (Không phải số cp)
Xét vào (3) thì là mệnh đề sai vì số tận cùng của n là 4 - 1 = 3 (Không phải số cp)
Nhưng theo đề thì có 1 mệnh đề sai và 2 mệnh đề đúng.
Vậy giả sử nêu trên là sai. => Chọn D
ĐKXĐ: \(x>3\)
\(\Leftrightarrow2x+2\sqrt{x-3}\sqrt{x+3}=\dfrac{4\left(x+3\right)}{\left(x-3\right)^2}\)
\(\Leftrightarrow\left(\sqrt{x+3}+\sqrt{x-3}\right)^2=\dfrac{4\left(x+3\right)}{\left(x-3\right)^2}\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-3}=\dfrac{2\sqrt{x+3}}{x-3}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x+3}-\sqrt{x-3}}=\dfrac{\sqrt{x+3}}{x-3}\)
\(\Leftrightarrow3x-9=x+3-\sqrt{x^2-9}\)
\(\Leftrightarrow\sqrt{x^2-9}=12-2x\) (\(x\le6\))
\(\Leftrightarrow x^2-9=144-48x+4x^2\)
\(\Leftrightarrow3x^2-48x+153=0\)
\(\Leftrightarrow x=8-\sqrt{13}\)
Đặt \(0\le a=\frac{x}{x^2+1}\le\frac{x}{2x}=\frac{1}{2}\)
\(\Rightarrow0\le a\le\frac{1}{2}\)
ta có \(P=2a^2+a=a\left(2a+1\right)\ge0\Rightarrow GTNN=0\) khi \(a\left(2a+1\right)=0\Leftrightarrow\frac{x}{x^2+1}=0\Leftrightarrow x=0\)
mà \(0\le a\le\frac{1}{2}\Rightarrow a^2\le\frac{1}{4}\Rightarrow P=2a^2+a\le\frac{2.1}{4}+\frac{1}{2}=1\Rightarrow GTLN=1\)
khi \(a=\frac{1}{2}\Leftrightarrow\frac{x}{x^2+1}=\frac{1}{2}\Leftrightarrow x=1\)