Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C
ta có
a chia 24 dư 12
=> a=24k +12(k là stn)
ta có 24k chia hết cho 8
12 không chia hết cho8
=> a không chia hết cho 8
học tốt
Lời giải:
Giả sử số aa có nn chữ số. Đặt a=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2..ana=a1a2..an¯
Theo bài ra ta có:
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯2019a1a2..an⋮20182019a1a2..an¯⋮2018
⇔2019.10n+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2...an⋮2018⇔2019.10n+a1a2...an¯⋮2018
⇔10n+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2..an⋮2018⇔10n+a1a2..an¯⋮2018
Vì 10n+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2..an10n+a1a2..an¯ luôn dương nên để nó chia hết cho 20182018 thì 10n+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2..an≥201810n+a1a2..an¯≥2018
⇒n≥4⇒n≥4
Để tìm aa min ta chọn nn min bằng 44
Khi đó 104+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2a3a4⋮2018104+a1a2a3a4¯⋮2018
⇔1928+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2a3a4⋮2018⇔1928+a1a2a3a4¯⋮2018
Do đó ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2a3a4=2018k−1928a1a2a3a4¯=2018k−1928 với k∈Nk∈N
Để a=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2a3a4a=a1a2a3a4¯ min thì kk min
2018k−1928=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2a3a4≥10002018k−1928=a1a2a3a4¯≥1000
⇒k≥1,45....⇒k≥2⇒k≥1,45....⇒k≥2 do k∈Nk∈N
Vậy kmin=2kmin=2
⇒amin=2018kmin−1928=2018.2−1928=2108⇒amin=2018kmin−1928=2018.2−1928=2108
Vậy.........
a có dạng:
a=143q+22
mà 143 chia hết cho 11 => 143q chia hết cho 11
22 chia hết cho 11
=> 143q+22 chia hết cho 11 hay a chia hết cho 11
Vậy...
=>a=143.k+22
mà 143 chia hết cho 11 =>143 . k chia hết cho 11
và 22 cũng chia hết cho 11
vậy a=143 . k +22 chia hết cho 11 (đpcm)
Ai nhanh mình cho 3 k