K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Bai nay a,b co nguyen ko ban , neu ko thi pt nay se co vo so nghiem (mik nghi the)

14 tháng 2 2020

a,b là số thực nha

1 tháng 3 2020

b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)

\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

Vậy pt (1) có 2 nghiệm x1,x2 với mọi m

Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

<=>\(4m^2-8m+4+2m+6=10\)

<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)

<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)

c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)

Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)

<=>\(2x_1x_2+x_1+x_2=-8\)

12 tháng 3 2021

đẽ vãi

7 tháng 10 2021

Đk: \(x\ge1\)

\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))

7 tháng 10 2021

Bạn làm chi tiết ra nữa đc khum? Như thế mình vẫn chưa hiểu lắm :((

6 tháng 8 2019

\(a,\) Thay a=1 ; b=-2 vào bt:

  \(\Rightarrow4x^2+2-2=0\)

      \(\Rightarrow4x^2=0\)

\(\Rightarrow x=0\)

a, thay a=1 b=-2 ta có phương trình 

\(4x^2-2\left(1+\left(-2\right)\right)x+1\left(-2\right)=0\)

\(4x^2+2x-2=0\)

\(2x^2+x-1=0\)

\(2x^2+2x-x-1=0\)

\(2x\left(x+1\right)-\left(x+1\right)=0\)

\(\left(x+1\right)\left(2x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)

a: x^2-mx+m-1=0

Khi m=5 thì (1) sẽ là x^2-5x+4=0

=>x=1 hoặc x=4

b:Δ=(-m)^2-4(m-1)=m^2-4m+4=(m-2)^2

Để phươg trình có 2 nghiệm phân biệt thì m-2<>0

=>m<>2

x2=2x1

x2+x1=m

=>3x1=m và x2=2x1

=>x1=m/3 và x2=2/3m

x1*x2=m-1

=>2/9m^2-m+1=0

=>2m^2-9m+9=0

=>2m^2-3m-6m+9=0

=>(2m-3)(m-3)=0

=>m=3 hoặc m=3/2

a: Khi m=1 thì phương trình sẽ là x^2-2x-1=0

=>x^2-2x+1-2=0

=>(x-1)^2=2

=>\(x=\pm\sqrt{2}+1\)

b: Δ=(-2)^2-4*1*(-m^2)=4m^2+4>=4>0

=>Phương trình luôn có hai nghiệm phân biệt