K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 3 2022

\(d\left(A;\Delta\right)=\dfrac{\left|-3\left(m-2\right)+9\left(m+1\right)-5m+1\right|}{\sqrt{\left(m-2\right)^2+\left(m+1\right)^2}}\)

\(=\dfrac{\left|m+16\right|}{\sqrt{2m^2-2m+5}}=k\Rightarrow\left(m+16\right)^2=k^2\left(2m^2-2m+5\right)\)

\(\Rightarrow\left(2k^2-1\right)m^2-2\left(k^2+16\right)m+5k^2-256=0\)

\(\Delta'=\left(k^2+16\right)^2-\left(2k^2-1\right)\left(5k^2-256\right)\ge0\)

\(\Rightarrow0\le k^2\le61\) \(\Rightarrow k^2_{max}=61\) khi \(m=\dfrac{7}{11}\)

a) Tìm tất cả các giá trị của tham số m đẻ khoảng cách từ giao điểm của hai đường thẳng  \(d_1:\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\) và \(d_2:x-2y+m=0\) đến gốc tọa độ bằng 2      b) Trong mp xOy cho hai điểm A(2;3) B(1;4)  . Đường thẳng cách đều hai điểm là             c)    Trong mp xOy cho hai điểm A(0;1) B(12;5)  C(-3;0). Đường thẳng cách đều ba điểm là                                                           ...
Đọc tiếp

a) Tìm tất cả các giá trị của tham số m đẻ khoảng cách từ giao điểm của hai đường thẳng  \(d_1:\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\) và \(d_2:x-2y+m=0\) đến gốc tọa độ bằng 2     

b) Trong mp xOy cho hai điểm A(2;3) B(1;4)  . Đường thẳng cách đều hai điểm là            

c)    Trong mp xOy cho hai điểm A(0;1) B(12;5)  C(-3;0). Đường thẳng cách đều ba điểm là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

1
NV
30 tháng 3 2021

Gọi giao điểm là A, thay tọa độ tham số d1 vào d2:

\(t-2\left(2-t\right)+m=0\Leftrightarrow3t+m-4=0\Rightarrow t=\dfrac{-m+4}{3}\)

\(\Rightarrow A\left(\dfrac{-m+4}{3};\dfrac{m+2}{3}\right)\)

\(\Rightarrow OA=\sqrt{\left(\dfrac{-m+4}{3}\right)^2+\left(\dfrac{m+2}{3}\right)^2}=2\)

\(\Leftrightarrow m^2-2m-8=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

b. Bạn không đưa 4 đáp án thì không ai trả lời được câu hỏi này. Có vô số đường thẳng cách đều 2 điểm, chia làm 2 loại: các đường thẳng song song với AB và các đường thẳng đi qua trung điểm của AB

c. Tương tự câu b, do 3 điểm ABC thẳng hàng nên có vô số đường thẳng thỏa mãn, là các đường thẳng song song với AB

30 tháng 3 2021

b) 

A. x-y+2=0

B. x+2y=0

C.2x-2y+10=0

D. x-y+100=0

c)

A. x-3y+4=0

B. -x+y+10=0

C. x+y=0

D. 5x-y+1=0

NV
30 tháng 4 2021

Khoảng cách AM là nhỏ nhất khi và chỉ khi M là hình chiếu vuông góc của A lên \(\Delta\)

Gọi d là đường thẳng qua A và vuông góc \(\Delta\Rightarrow\) d nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)

M là giao điểm của d và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+y-2=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)

8 tháng 10 2019

Đáp án D

11 tháng 2 2023

\(1/\)

\(M\left(3;5\right);d:x+y+1=0\)

\(\)Gọi khoảng cách từ M đến d là \(l\)

\(l\left(M;d\right)=\dfrac{\left|x_M+y_M+1\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3+5+1\right|}{\sqrt{1^2+1^2}}=\dfrac{9\sqrt{2}}{2}\)

\(M\left(2;3\right);d:\left\{{}\begin{matrix}x-2t\\y=2+3t\end{matrix}\right.\)

d qua \(M\left(2;3\right)\) có \(VTCP\overrightarrow{u}=\left(-2;3\right)\Rightarrow VTPT\overrightarrow{n}=\left(3;2\right)\)

\(PTTQ\) của \(\Delta:3\left(x-2\right)+2\left(y-3\right)=0\)

\(\Rightarrow3x-6+2y-6=0\)

\(\Rightarrow3x+2y-12=0\)

Gọi khoảng cách từ M đến d là \(l\)

\(l\left(M;d\right)=\dfrac{\left|3.x_M+2.y_M-12\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|3.2+2.3-12\right|}{\sqrt{3^2+2^2}}=0\)

8 tháng 12 2016

a/ Gọi điểm cố định đó là \(N\left(x_0;y_0\right)\) .

Vì (d) đi qua N nên : \(\left(m-2\right)x_0+\left(m-1\right)y_0-1=0\Leftrightarrow m\left(x_0+y_0\right)-\left(2x_0+y_0+1\right)=0\)

Để (d) luôn đi qua N với mọi m thì \(\begin{cases}x_0+y_0=0\\2x_0+y_0+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x_0=-1\\y_0=1\end{cases}\) . Vậy điểm cố định đó là N(-1;1)

 

 

8 tháng 12 2016

b/ Gọi \(A\left(\frac{1}{m-2};0\right)\)\(B\left(0;\frac{1}{m-1}\right)\) là hai điểm thuộc (d)

và A,B lần lượt nằm trên Ox và Oy

Khi đó \(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)

hay \(\frac{1}{h^2}=\frac{1}{\left(m-1\right)^2}+\frac{1}{\left(m-2\right)^2}\)

Tới đây bạn tìm GTNN của \(\frac{1}{h^2}\) rồi suy ra GTLN của \(h\) nhé :)

 

 

 

1 tháng 6 2020
https://i.imgur.com/YT9pqQw.jpg