Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)a/b<c/d`
Nhân 2 vế cho `bd>0` ta có:
`(abd)/b<(bcd)/d`
`<=>ad<bc`
`b)ad<bc`
Chia 2 vế cho `bd>0` ta có:
`(ad)/(bd)<(bc)/(bd)`
`<=>a/b<c/d`.
Bài làm
- Xét a(b+2001)=ab+2001a
b(a+2001)=ab+2001b
- Ta xét 3 trường hợp sau:
+Nếu a>b =>2001a>2001b
=>a(b+2001)>b+(a+2001)
=>a/b > a+2001/b+2001
+Nếu a<b =>2001a<2001b
=>a(b+2001)<b+(a+2001)
=>a/b < a+2001/b+2001
+Nếu a=b =>a/b = a+2001/b+2001
a, Ta có: \(\hept{\begin{cases}\frac{a}{b}=\frac{ad}{bd}\\\frac{c}{d}=\frac{bc}{bd}\end{cases}}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
a) \(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow\frac{ad}{bc}< \frac{bc}{bd}\)\(\Rightarrow ad< bc\)
b) ad < bc \(\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\)( vì bd > 0 )\(\Rightarrow\frac{a}{b}< \frac{c}{d}\)
a) Ta có: \(\hept{\begin{cases}\frac{a}{b}=\frac{ad}{bd}\\\frac{c}{d}=\frac{cb}{db}\end{cases}}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{bd}\Rightarrow ad< cb\)
b) Nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31
18/31=181818/313131
Ta có: \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (do b > 0 và b + d > 0)
Ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+b}{b+d}\left(1\right)\)
Ta lại có : \(ad< bc\)
\(\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d.\left(a+c\right)< c.\left(b+d\right)\)
\(\Leftrightarrow\frac{a+b}{b+d}< \frac{c}{d}\left(2\right)\)
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)