Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7)\(\frac{1}{1-x^2}>\frac{3x}{\sqrt{1-x^2}}-1\)(-1<x<1)
Đặt a=1-x2 ta được: (ĐK a>0)
\(\frac{1}{a}>\frac{3x}{\sqrt{a}}-1\)
\(\Leftrightarrow\frac{1}{a}-\frac{3\sqrt{a}x}{a}+\frac{a}{a}>0\)
\(\Leftrightarrow\frac{1-3\sqrt{a}x+a}{a}>0\)
\(\Leftrightarrow1-3\sqrt{a}x+a>0\left(a>0\right)\)
\(\Leftrightarrow1-3\sqrt{x^2-1}.x+x^2-1>0\)
\(\Leftrightarrow x^2>3\sqrt{x^2-1}x\)
<=>x4 > 9.(x2-1).x2
<=>x4>9x4-9x2
<=>8x4-9x2<0
<=>x2.(8x2-9)<0
<=>8x2-9<0
<=>x2<9/8
=>\(-\frac{3\sqrt{2}}{4}\)<x<\(\frac{3\sqrt{2}}{4}\)
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
DO đó; OM là tia phân giác của góc AOB
Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOB}=120^0\)
Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)
Thay 1 vào x, ta có
f(x) =14+12+a=0
2+a=0 suy ra a=-2
Xét các trường hợp :
1. \(x\ge\frac{7}{2}\) , khi đó : \(\left(2x-7\right)+\left(2x+1\right)\le8\Leftrightarrow4x\le14\Leftrightarrow x\le\frac{7}{2}\)
Vậy \(x=\frac{7}{2}\)
2. \(x\le-\frac{1}{2}\) , khi đó : \(\left(7-2x\right)+\left(-2x-1\right)\le8\Leftrightarrow4x\ge-2\Leftrightarrow x\ge-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
3. \(-\frac{1}{2}< x< \frac{7}{2}\) , khi đó \(\left(7-2x\right)+\left(2x+1\right)\le8\Leftrightarrow8\le8\) (luôn đúng)
Vậy tập giá trị x thỏa mãn : \(x\in\left[-\frac{1}{2};\frac{7}{2}\right]\)
Các giá trị nguyên của x là : 0,1,2,3