Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mp (SAB), qua M kẻ đường thẳng song song SB cắt AB tại G \(\Rightarrow G\in\left(P\right)\)
Trong mp (SAC), qua M kẻ đường thẳng song song AC cắt SC tại E \(\Rightarrow E\in\left(P\right)\)
Trong mp (ABCD), qua G kẻ đường thẳng song song AC, lần lượt cắt BC tại F và AD kéo dài tại H
\(\Rightarrow F;H\in\left(P\right)\)
Trong mp (SAD), nối HM kéo dài cắt SD tại I
\(\Rightarrow\) Ngũ giác EFGMI là thiết diện của (P) và chóp
a, Giả thiết cho biết (α) và(ABCD) cùng chứa điểm O
Mà (α) // AB ⇒ (α) chứa đường thẳng song song với AB
⇒ (α) \(\cap\) (ABCD) = d1 . Với d1 là đường thẳng đi qua O và song song với AB. Trong (ABCD) gọi \(\left\{{}\begin{matrix}G=d_1\cap AD\\H=d_1\cap BC\end{matrix}\right.\)
⇒ (α) \(\cap\) (ABCD) = GH (hình vẽ)
Giả thiết cho biết :
Giả thiết cho biết (α) và (SAC) cùng chứa điểm O
Mà (α) // SC ⇒ (α) chứa đường thẳng song song với SC
⇒ (α) \(\cap\) (SAC) = d2 . Với d2 là đường thẳng đi qua O và song song với SC. Trong (SAC) gọi I = d2 \(\cap\) SA
⇒ (α) \(\cap\) (SAC) = O\(I\) (hình vẽ)
(P) và (SAB) cùng chứa điểm I. Mà (P) chứa GH, (SAB) chứa AB. Mà ta lại có AB // GH
⇒ (P) \(\cap\) (SAB) = d3. Với d3 là đường thẳng đi qua I và song song với AB và GH
Trong (SAB), gọi J = \(d_3\cap SB\)
⇒ Thiết diện cần tìm là tứ giác IJHG
Tứ giác này có IJ // HG nên nó là hình thang
Trong mp (ABCD), nối AN kéo dài cắt BC kéo dài tại E
⇒E∈(SBC)⇒E∈(SBC)
Do AD song song BE, áp dụng Talet:
ANNE=NDNC=1⇒AN=NE⇒ANNE=NDNC=1⇒AN=NE⇒ N là trung điểm AE
⇒MN⇒MN là đường trung bình tam giác SAE
⇒MN//SE⇒MN//(SBC)