Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5)
Gọi số tự nhiên nhỏ nhất cần tìm là a (a thuộc N*)
Theo bài ra ta có:
a chia 3 dư 1=> a + 2 chia hết cho 3
a chia 4 dư 2=> a + 2 chia hết cho 4
a chia 5 dư 3=> a + 2 chia hết cho 5
a chia 6 dư 4=> a + 2 chia hết cho 6
a chia hết cho 11
=> a + 2 thuộc BC(3; 4; 5; 6)
a chia hết cho 11
BCNN(3; 4; 5; 6) = 60
=> a + 2 thuộc B(60) = {0; 60; 120; 180; 240; 300; 360; 420; 480; ... }
=> a thuộc {x; 59; 118; 178; 238; 298; 358; 418; 478; ... }
Mà a là số tự nhiên nhỏ nhất chia hết cho 11 => a = 418
Vậy số tự nhiên cần tìm là 418.
Bài 1:
a/ Sau 1 giờ nếu chỉ vòi 1 chảy thì được số phần bể là: 1:2=1/2 (bể)
Sau 1 giờ nếu chỉ vòi 2 chảy thì được số phần bể là: 1:6=1/6 (bể)
Sau 1 giờ nếu cả vòi 1 và vòi 2 cùng chảy thì được số phần bể là: 1/2+1/6 = 4/6 = 2/3(bể)
Sau 1 giờ nếu tháo vòi 3 thì chảy ra được số phần bể là: (2/3):2=1/3 (bể)
=> Sau 1 giờ nếu cả 3 vòi cùng chảy thì được số phần bể là: 2/3 - 1/3 = 1/3(bể)
b/ Tổng thời gian để cả 3 vòi cùng chảy đầy bể là: 1:1/3 = 3 giờ
c/ Vòi 1 mở trong 30 phút được số phần bể là: 1/2 :2 =1/4 (bể)
Nếu vòi 1 chảy trong 30 phút và vòi 2 và vòi 3 cùng chảy trong 1 giờ được số phần bể là: (1/4+1/6)-1/3 = 1/12 (bể)
Lượng nước lúc đó là 350 lít
=> Dung tích bể là: 350*12=4200 (lít)
Câu 1:
a) \(\dfrac{n-5}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(n-5⋮n-3\)
\(\Rightarrow n-3-2⋮n-3\)
\(\Rightarrow2⋮n-3\)
\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng giá trị:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
Vậy \(n\in\left\{-1;0;2;3\right\}\)
b) \(\dfrac{2n+1}{n+1}\)
Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(2n+1⋮n+1\)
\(\Rightarrow2n+2-1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
n-1 | -1 | 1 |
n | 0 | 2 |
Vậy \(n\in\left\{0;2\right\}\)
Câu 2:
a) \(\dfrac{n+7}{n+6}\)
Gọi \(ƯCLN\left(n+7;n+6\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản
b) \(\dfrac{3n+2}{n+1}\)
Gọi \(ƯCLN\left(3n+2;n+1\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản
hồi nãy nhấn nhầm, tiếp nhé.
=> 3 chia hết cho (n-2) (Vì n-2 chia hết n-2)
=> n-2 thuộc Ư(3)={-1;1;-3;3}
n-2 | -1 | 1 | 3 | -3 |
---|---|---|---|---|
n | 1 | 3 | 5 | -1 |
Vậy n thuộc{ 1; 3 ; 5 ; -1 }
a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên
\(\Rightarrow5⋮n-4\)
\(\Rightarrow n-4\)là ước của \(5\)
Mà các ước của \(5\) là : \(5;1;-1;-5\)
Ta có bảng sau :
\(n-4\) | \(5\) | \(1\) | \(-1\) | \(-5\) |
\(n\) | \(9\) | \(5\) | \(3\)\(\) | \(-1\) |
\(KL\) | \(TM\) | \(TM\) | \(TM\) | \(TM\) |
Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.
b) Với \(n=5\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)
Với \(n=-1\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)