Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right).\left(x-2015\right)< 0\)
\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu
\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)
\(\Rightarrow3< x< 2015\)
\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)
( ko bt đúng hay sai nx )
thám tử
\(\left(x-3\right)\left(x-2015\right)< 0\)
Với mọi \(x\in R\) thì:
\(x-2015< x-3\)
Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)
Nên \(3< x< 2015\)
\(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|=0\)
\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|\ge0\forall x\\\left|y+\dfrac{2}{3}\right|\ge0\forall y\\\left|x^2+xz\right|\ge0\forall x;z\end{matrix}\right.\) \(\Rightarrow\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|=0\\\left|y+\dfrac{2}{3}\right|=0\\\left|x^2+xz\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{2}{3}\\z=-\dfrac{1}{2}\end{matrix}\right.\)
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
\(B=\left[\dfrac{1}{100}-1^2\right]\left[\dfrac{1}{100}-\left(\dfrac{1}{2}\right)^2\right]\cdot...\cdot\left[\dfrac{1}{100}-\left(\dfrac{1}{10}\right)^2\right]\cdot...\cdot\left[\dfrac{1}{100}-\left(\dfrac{1}{120}\right)^2\right]\)
\(=\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{100}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{14400}\right)\)
=0
a, \(2^3.2^5=2^8=256\)
\(\left(-3\right)^9:\left(-3\right)^5=\left(-3\right)^4=81\)
\(\left(-6\right)^9.6^5=\left(-1\right)^9.6^9.6^5=\left(-1\right).6^{14}\\ \left(\dfrac{1}{2}\right)^5=\dfrac{1}{32}\)
b, \(\left(\dfrac{3}{5}\right)^6.\left(\dfrac{5}{3}\right)^6=\left(\dfrac{3}{5}. \dfrac{5}{3}\right)^6=1^6=1\\ \left(-\dfrac{7}{8}\right)^9:\left(\dfrac{7}{4}\right)^9=\left(-\dfrac{7}{8}:\dfrac{7}{4}\right)^9=\left(-\dfrac{1}{2}\right)^9=-\dfrac{1}{512}\\ \left(\left(-\dfrac{1}{2}\right)^2\right)^3=\left(\dfrac{1}{2}\right)^{...}\Rightarrow\left(\dfrac{1}{64}\right)=\left(\dfrac{1}{2}\right)...\Rightarrow\left(\dfrac{1}{64}\right)=\left(\dfrac{1}{2}\right)^6\)
c, \(\left(\dfrac{2}{3}\right)^8=\left(\left(\dfrac{2}{3}\right)^4\right)^{...}\Rightarrow\left(\left(\dfrac{2}{3}\right)^4\right)^2=\left(\left(\dfrac{2}{3}\right)^4\right)^{...}\Rightarrow\left(\dfrac{2}{3}\right)^8=\left(\left(\dfrac{2}{3}\right)^4\right)^2\\ \left(\dfrac{1}{3}\right)^{12}:\left(-\dfrac{3}{9}\right)^{12}=\left(\dfrac{1}{3}.\left(-3\right)\right)^{12}=\left(-1\right)^{12}=1\\ \left(\dfrac{1}{3}\right)^{12}:\left(\dfrac{1}{3}\right)^{10}=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{9}\)
??? Sao tui chẳng thấy j nhể