Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải được phần 1 rồi nhưng không biết cách viết bài giải để gửi cho bn :))), theo mình thì phần 1 bạn chuyển căn thứ nhất với căn thứ 3 thành 1 cặp, căn thứ hai với căn thứ tư thành một cặp sau đó nhân liên hợp nhé!
\(ĐK:x^2-5x-6\ge0\\ PT\Leftrightarrow\sqrt{x^2-5x-6}+2\left(x^2-5x-6\right)=0\\ \Leftrightarrow\sqrt{x^2-5x-6}\left(1+2\sqrt{x^2-5x-6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-5x-6=0\left(tmĐK\right)\\2\sqrt{x^2-5x-6}=-1\left(vn\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)
Đặt \(x^2+3x=a\left(a>=-\dfrac{9}{4}\right)\)
BPT sẽ trở thành \(a>=2+\sqrt{5a+14}\)
=>\(a-2>=\sqrt{5a+14}\)
=>\(\sqrt{5a+14}< =a-2\)
=>\(\left\{{}\begin{matrix}a-2>=0\\5a+14< =\left(a-2\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\5a+14-a^2+4a-4< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\-a^2+9a+10< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\a^2-9a-10>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\\left(a-10\right)\left(a+1\right)>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\\left[{}\begin{matrix}a>=10\\a< =-1\end{matrix}\right.\end{matrix}\right.\)
=>a>=10
=>\(x^2+3x>=10\)
=>\(x^2+3x-10>=0\)
=>(x+5)(x-2)>=0
=>\(\left[{}\begin{matrix}x>=2\\x< =-5\end{matrix}\right.\)
Dạ 2 đề là 1 ạ tại em muốn ghi lại cho mọi người hiểu ạ
Viết đề mà ko ai đọc được vậy :v
a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)
\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)
\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)
\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )
Vậy...
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)
<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)
Xét \(\sqrt{x^2+1}+3-x=0\)
<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))
Xét \(\sqrt{x^2+1}+3-x\ne0\)
pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)
<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)
<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)
<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)
pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)
<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))
=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)
<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)
<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))
=>(2) vô nghiệm
Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)
P/s: Hơi dài :)