Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B=\frac{\sqrt{\frac{1}{9}}-3}{\sqrt{\frac{1}{9}}-1}\)
\(B=\frac{\frac{1}{3}-3}{\frac{1}{3}-1}\)
\(B=\frac{-\frac{8}{3}}{-\frac{2}{3}}=4\)
đkxđ: \(\hept{\begin{cases}x\ne1\\x\ne25\end{cases}}\)
Ta có:
\(A=\frac{x-21}{x-6\sqrt{x}+5}+\frac{1}{\sqrt{x}-1}+\frac{1}{5-\sqrt{x}}\)
\(A=\frac{x-21}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-5}\)
\(A=\frac{x-21+\sqrt{x}-5-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)
\(A=\frac{x-25}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)
\(A=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-5\right)}\)
\(A=\frac{\sqrt{x}+5}{\sqrt{x}-1}\)
câu 2
\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)
câu 1
\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)
\(=\left(\dfrac{x+3\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{\left(x+2\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
1) Ta có: \(\dfrac{a-6\sqrt{a}+9}{5\sqrt{a}-15}\)
\(=\dfrac{\left(\sqrt{a}-3\right)^2}{5\left(\sqrt{a}-3\right)}\)
\(=\dfrac{\sqrt{a}-3}{5}\)
2) Ta có: \(5x-\sqrt{x^2-10x+25}\)
\(=5x-\left|x-5\right|\)
\(=5x-5+x\)
=6x-5
3) Ta có: \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
\(=\dfrac{\left|x-1\right|}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\pm1}{x+1}\)
4) Ta có: \(3\sqrt{5}-\sqrt{46-6\sqrt{5}}\)
\(=3\sqrt{5}-3\sqrt{5}+1\)
=1
a: ĐKXĐ: \(x>0\)
b: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
1) Ta có: \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)