K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

Với \(x\ge0;x\ne4\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}+\frac{x+4}{4-x}\)

\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-x-4}{x-4}=\frac{5\sqrt{x}-10}{x-4}=\frac{5}{\sqrt{x}+2}\)

c, Ta có : \(A.B>1\Rightarrow\frac{5}{\sqrt{x}+3}-1>0\Leftrightarrow\frac{2-\sqrt{x}}{\sqrt{x}+3}>0\)

\(\Rightarrow2-\sqrt{x}>0\Leftrightarrow x< 4\)Kết hợp với đk vậy \(0\le x< 4\)

25 tháng 12 2021

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

hay AD\(\perp\)BC

25 tháng 12 2021

Giúp mình câu c

 

28 tháng 3 2022

đang thi à

28 tháng 3 2022

mình đang ôn tập nhé=))

8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

a: AB/AC=5/6

=>HB/HC=25/36

=>HB/25=HC/36=k

=>HB=25k; HC=36k

AH^2=HB*HC

=>25k*36k=30^2

=>900k^2=900

=>k=1

=>x=25cm; y=25cm

b: AB/AC=3/4

=>HB/HC=9/16

=>x/y=9/16

=>x/9=y/16=(x+y)/(9+16)=125/25=5

=>x=45cm; y=80cm

10 tháng 6 2021

câu 2 phần 2:

\(\left\{{}\begin{matrix}4x+3y=11\\4x-y=7\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}4y=4\\4x-y=7\end{matrix}\right.< =>\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\).Vậy hệ pt có nghiệm

(x,y)=(2;1)

caau3 phần 2:

\(x^2-2x+m-1=0\)(1)

\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)

để pt (1) có 2 nghiệm x1,x2<=>\(\Delta'\ge0< =>2-m\ge0< =>m\le2\)

theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=2\left(1\right)\\x1.x2=m-1\left(3\right)\end{matrix}\right.\)

có: \(x1^4\)\(-x1^3=x2^4-x2^3\)

\(< =>x1^4-x2^4-x1^3+x2^3=0\)

\(< =>\left(x1^2-x2^2\right)\left(x1^2+x2^2\right)-\left(x1^3-x2^3\right)\)\(=0\)

\(< =>\left(x1-x2\right)\left(x1+x2\right)\left[\left(x1+x2\right)^2-2x1x2\right]\)\(-\left(x1-x2\right)\left(x1^2+x1x2+x^2\right)=0\)

\(< =>\)\(\left(x1-x2\right)\left[2.2^2-2\left(m-1\right)-\left(x1^2+x1x2+x2^2\right)\right]=0\)

\(< =>.\left(x1-x2\right)\left[8-2m+2-\left(x1+x2\right)^2+x1x2\right]=0\)

<=>\(\left(x1-x2\right)\left[10-2m-4+m-1\right]=0\)

\(< =>\left(x1-x2\right)\left(5-m\right)=0\)

\(=>\left[{}\begin{matrix}x1-x2=0\\5-m=0\end{matrix}\right.< =>\left[{}\begin{matrix}x1=x2\left(2\right)\\m=5\left(loai\right)\end{matrix}\right.\)

thế(2) vào(1)=>\(x1=x2=1\left(4\right)\)

thế (4) vào (3)=>\(m-1=1=>m=2\left(TM\right)\)

vậy m=2 thì....

Ta có: \(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(\Leftrightarrow5\cdot\dfrac{3\sqrt{x-3}}{5}-7\cdot\dfrac{2\sqrt{x-3}}{7}-7\cdot\sqrt{x^2-9}+18\cdot\dfrac{\sqrt{x^2-9}}{3}=0\)

\(\Leftrightarrow\sqrt{x-3}-\sqrt{x^2-9}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(1-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

7 tháng 9 2021

ĐK: \(x\ge3\)

\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-5\sqrt{x-3}-3\sqrt{x^2-9}=0\)

Ta thấy \(-5\sqrt{x-3}-3\sqrt{x^2-9}\le0\forall x\ge3\) nên phương trình tương đương:

\(\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x^2-9}=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\left(tm\right)\)

10 tháng 7 2021

đề là j bn :?

\(\dfrac{1}{1+\sqrt{2}+\sqrt{7}}=\dfrac{\sqrt{2}+1-\sqrt{7}}{3+2\sqrt{2}-7}\)

\(=\dfrac{\sqrt{2}-\sqrt{7}+1}{-4+2\sqrt{2}}=\dfrac{\left(\sqrt{2}-\sqrt{7}+1\right)\left(2+\sqrt{2}\right)}{-2\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}\)

\(=\dfrac{2\sqrt{2}+2-2\sqrt{7}-\sqrt{14}+2+2\sqrt{2}}{-4}\)

\(=\dfrac{4\sqrt{2}+4-2\sqrt{7}-\sqrt{14}}{-4}=\dfrac{-4\sqrt{2}-4+2\sqrt{7}+\sqrt{14}}{4}\)