K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

\(\dfrac{x+1}{3\left(x-1\right)^2\left(x+1\right)}và\dfrac{1-x}{3\left(x-1\right)^2\left(x+1\right)}\)

25 tháng 12 2021

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

4 tháng 5 2021

 Giải:

Gọi x là năng suất dự tính của xí nghiệp (sản phẩm/ngày); (x ∈ N*) .

⇒ Số thảm len dệt được theo dự tính là: 20x (thảm).

Sau khi cải tiến, năng suất của xí nghiệp đã tăng 20% nên năng suất trên thực tế là:

 x + 20%.x = x + 0,2x = 1,2x (sản phẩm/ngày)

Sau 18 ngày, xí nghiệp dệt được: 

18.1,2x = 21,6.x (thảm).

Vì sau 18 ngày, xí nghiệp không những hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nên ta có phương trình:

21,6.x = 20x + 24

⇔ 21,6x – 20x = 24

⇔ 1,6x = 24

⇔ x = 15 (thỏa mãn)

Vậy số thảm mà xí nghiệp phải dệt ban đầu là: 20.15 = 300 (thảm).

Em cần hỗ trợ tất cả các câu hả em?

15 tháng 10 2023

a: Xét tứ giác BHCD có

M là trung điểm chung của BC và HD

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

=>BH//CDvà BD//CH

BH//CD

AC vuông góc BH

Do đó: CA vuông góc CD

=>ΔCAD vuông tại C

CH//BD

CH vuông góc AB

Do đó: BD vuông góc AB

=>ΔABD vuông tại B

c: \(\widehat{ABD}=\widehat{ACD}=90^0\)

=>ABDC là tứ giác nội tiếp đường tròn đường kính AD

=>ABDC nội tiếp (I)

=>IA=IB=ID=IC

15 tháng 10 2023

Bạn ơi vẽ hình giúp với

 

31 tháng 1 2021

3.(⅓x - ¼)² = ⅓ 

=> (\(\dfrac{1}{3x}\)\(\dfrac{1}{4}\) )2 = \(\dfrac{1}{9}\)

=>\(\left[{}\begin{matrix}\dfrac{1}{3x}-\dfrac{1}{4}=\dfrac{-1}{3}\\\dfrac{1}{3x}-\dfrac{1}{4}=\dfrac{1}{3}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\dfrac{1}{3x}=\dfrac{-1}{12}\\\dfrac{1}{3x}=\dfrac{7}{12}\end{matrix}\right.\)        => \(\left[{}\begin{matrix}x=-4\\x=\dfrac{12}{21}=\dfrac{4}{7}\end{matrix}\right.\)

Vậy, tập nghiệm x thỏa mãn là S=\(\left\{-4;\dfrac{4}{7}\right\}\)

30 tháng 8 2021

có pk đề như này ko:x4+x3+2x2+x+1=0(vô nghiệm)

 

30 tháng 8 2021

Dễ thấy x=0 không phải là nghiệm của phương trình.

Khi đó phương trình tương đương:

\(x^2+x+2+\dfrac{1}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)+\left(x+\dfrac{1}{x}\right)=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+\left(x+\dfrac{1}{x}\right)=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{1}{x}+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=0\\x+\dfrac{1}{x}+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Rightarrow\) Phương trình vô nghiệm.

Gọi E là giao điểm của AC và BD.

∆ECD có ∠C1 = ∠D1 (do ∠ACD = ∠BDC) nên là tam giác cân.

Suy ra EC = ED        (1)

Tương tự ∆EAB cân tại A  suy ra: EA = EB      (2)

Từ (1) và (2) ta có: EA + EC = EB + ED ⇒ AC = BD

Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.4

17 tháng 7 2016

Đặt \(A=n^2-4n+7\) .

1. Với n = 0 => A = 7 không là số chính phương (loại)

2. Với n = 1 => A = 4 là số chính phương (nhận)

3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)

\(\Rightarrow\left(n-2\right)^2< A< n^2\)

Vì A là số tự nhiên nên  \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)

Thử lại, n = 3 => A = 4 là một số chính phương.

Vậy : n = 1 và n = 3 thoả mãn đề bài .