Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bạn làm theo phương pháp chứng minh chặn dưới
Từ gt => Ít nhất 1 trong 3 số a,b,c không lớn hơn 1 (Nếu ngược lại thì a2+b2+c2+abc>4)
Giả sử đó là a thì:
ab+bc+ca-abc=a(b+c)+bc(1-a) \(\ge0\)
Tiếp theo bạn chứng minh chặn trên. Đk giả thiết cho có thể viết lại là
\(\frac{a^2}{4}+\frac{b^2}{4}+\frac{c^2}{4}+2\cdot\frac{a}{2}\cdot\frac{b}{2}\cdot\frac{c}{2}=1\)
Do vậy tồn tại \(\Delta\)ABC không tù sao cho a=2cosA, b=2cosB, c=2cosC. BĐT cần chứng minh trở thành
2cosAcosB+2cosBcosC+2cosCcosA-4cosAcosBcosC \(\le\)1(1)
Có 2 trong 3 góc A,B,C không lớn hơn 60o hoặc không nhỏ hơn 60o
Không mất tính tổng quát giả sử 2 góc đó là góc A và B, khi đó:
(1-2cosA)(1-2cosB) \(\ge\)0
Mặt khác, ta có BĐT (1) tương đương với
cos(A+B)+cos(A-B)+(2cosA+2cosB-4cosAcosB)cosC \(\le\)1
cos(A-B)+(2cosA+2cosB-4cosAcosB-1)cosC\(\le\)1
cos(A-B)-(1-2cosA)(1-2cosB)cosC \(\le\)1
Do (1-2cosA)(1-2cosB) \(\ge\)0; cosC\(\ge\)0 và cos(A-B) \(\le\)1 nên BĐT cuối hiển nhiên đúng
=> ĐPCM
Cách giải: Khánh Hoàng (khanhtuqq)
b: (3x-5)(2x+9)=0
=>3x-5=0 hoặc 2x+9=0
=>x=5/3 hoặc x=-9/2
c: \(\Leftrightarrow\left(x-9\right)^2+\left(x+9\right)\left(x-9\right)=0\)
=>(x-9)(x-9+x+9)=0
=>2x(x-9)=0
=>x=0 hoặc x=9
d: \(\Leftrightarrow x-5\left(2x-3\right)=3\)
=>x-10x+15=3
=>-9x+15=3
=>-9x=-12
hay x=4/3(nhận)
a, Xét \(\Delta ABH\)và\(\Delta APE\)
Ta có: góc BHA = góc PEA (=90')
AH = AE ( cạnh của hình vuông AHKE)
góc BAH = góc PAE ( cùng bằng 90' trừ đi góc HAP)
Do đó \(\Delta ABH=\Delta APE\)(cạnh huyền - góc nhọn)
Suy ra: AB = AP
Suy ra: \(\Delta APB\)cân tại A.
cảm ơn bạn nhiều nhé. nếu bạn biết làm 2 câu cuối thì có thể chỉ mình luôn đk ko ạ? mình cần gấp lắm
b:
Ta có: MN\(\perp\)AC
AB\(\perp\)AC
Do đó: MN//AB
Xét ΔACB có
M là trung điểm của BC
MN//AB
Do đó: N là trung điểm của AC
=>\(\dfrac{AN}{AC}=\dfrac{1}{2}\)
c:
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
=>MA=MB
=>ΔMAB cân tại M
Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{MAD}=90^0\)
\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
mà \(\widehat{MAB}=\widehat{HBA}\)(ΔMAB cân tại M)
nên \(\widehat{DAB}=\widehat{HAB}\)
=>AB là tia phân giác của góc DAH