Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{x}{3x+6}=\dfrac{x}{3\left(x+2\right)}=\dfrac{x\left(x+2\right)}{3\left(x+2\right)^2}\\ \dfrac{5}{x^2+4x+4}=\dfrac{5}{\left(x+2\right)^2}=\dfrac{15}{3\left(x+2\right)^2}\\ b,\dfrac{5}{x^2-y^2+2x+1}=\dfrac{5}{\left(x-y+1\right)\left(x+y+1\right)}=\dfrac{5x}{x\left(x-y+1\right)\left(x+y+1\right)}\\ \dfrac{6}{x\left(x+y+1\right)}=\dfrac{6\left(x-y+1\right)}{x\left(x-y+1\right)\left(x+y+1\right)}\)
\(c,\dfrac{7x}{x^4-1}=\dfrac{7x}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}=\dfrac{7x\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}\\ \dfrac{5x}{x^4+2x^2+1}=\dfrac{5x}{\left(x^2+1\right)^2}=\dfrac{5x\left(x-1\right)\left(x+1\right)}{\left(x^2+1\right)^2\left(x-1\right)\left(x+1\right)}\)
a: Ta có: \(\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2-9-x^2-3x+10=6\)
\(\Leftrightarrow-3x=5\)
hay \(x=-\dfrac{5}{3}\)
c: \(4x^2-9=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2-9-x^2-3x+10=6\\ \Leftrightarrow-3x=5\Leftrightarrow x=-\dfrac{5}{3}\\ b,\Leftrightarrow2x^2+3x^2-3=5x^2+5x\\ \Leftrightarrow5x=-3\Leftrightarrow x=-\dfrac{3}{5}\\ c,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\\ d,\Leftrightarrow\left(5-2x\right)^2-4=0\\ \Leftrightarrow\left(5-2x-2\right)\left(5-2x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\\ e,\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(f,\Leftrightarrow\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{9}{2}\end{matrix}\right.\\ g,\Leftrightarrow\left(x^2-4\right)\left(3x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\dfrac{4}{3}\end{matrix}\right.\\ h,\Leftrightarrow\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^4+2x^2+1-x^2\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\)
\(x^2-5\)
\(=x^2-\left(\sqrt{5}\right)^2\)
\(=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
gợi ý thui, làm mêt lắm
4x2 - 1 = (2x)2 - 12
1- 2x = -(2x-1)
Key : 133 ; 322 ; 329 ; 266 ; 455 ; 644 ; 833 ; 714......
Đây chỉ vài vd
#Sun