K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

ta sẽ làm gì với cái này :D

11 tháng 5 2017

bạn làm hôj mjk

11 tháng 3 2017

Em vào đây nhé Vẽ hình trực tuyến trên hoc24 | Hướng dẫn tạo khóa học trên hoc24 | Học trực tuyến

12 tháng 3 2017

Vẽ hình trực tuyến trên hoc24 | Hướng dẫn tạo khóa học trên hoc24 | Học trực tuyến

Ấn vào cái chữ màu xanh nhé!

12 tháng 3 2017

A=a=b=c=0 đó bạn ( mình ko bt cách giảihehe)

13 tháng 3 2017

Ta có:\(\left(-5a^2b^4c^6\right)^7-\left(9a^3bc^5\right)^8=0\)

\(\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}=0\)

\(a^{14}b^{28}c^{42}\ge0\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}\le0\)

\(a^{24}b^8c^{40}\ge0\Rightarrow9^8a^{24}b^8c^{40}\ge0\)

\(\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}\le0\)

Mà VP=0

Dấu "=" xảy ra khi

\(\left(-5\right)^7a^{14}b^{28}c^{42}=0\)\(9^8a^{24}b^8c^{40}=0\)

\(\Rightarrow a=b=c=0\)

\(\Rightarrow A=a+b+c=0+0+0=0\)

29 tháng 8 2017

quách công đạt

Toán lớp 7, để học tốt toán đầy đủ bài tập và lý thuyết . Tham khảo ở link này nhé pn , có hết bt pn cần lm !

29 tháng 8 2017

à ko tụ làm lên mạng cha nha mai méc cô

nhưng thôi cái này tui vừa làm xong nè

bài 14 : Tính theo hàng ngang theo thứ tự từ trên xuống:

132.4=1.432=18;8:(12)=8.(21)=16−132.4=−1.432=−18;−8:(−12)=−8.(−21)=16

Tính theo cột dọc theo thứ tự từ trái sang phải:

132:(8)=132.(18)=(1)(1)32.8=1256−132:(−8)=−132.(18)=(−1)(−1)32.8=1256

4.(12)=4.(1)2=42=24.(−12)=4.(−1)2=−42=−2

(18):16=(18).116=(1).18.16=1128(−18):16=(−18).116=(−1).18.16=−1128

bài 16 :a) (23+37):45+(13+47):45(−23+37):45+(−13+47):45

= (23+37+13+47):45=(33+77):45=(1+1):45=0(−23+37+−13+47):45=(−33+77):45=(−1+1):45=0

b) 59:(111522)+59:(11523)59:(111−522)+59:(115−23) = 59:2522+59:11015=59.223+59.159=59(223+159)=59.273=5.(1)=5

bài 17 : a) |-2,5| = 2,5 đúng

b) |-2,5| = -2,5 sai

c) |-2,5| = -(-2,5) = 2,5 đúng

2. Tìm x

a) |x| = 1515 => x = ± 1515

b) |x| = 0,37 => x = ± 0,37

c) |x| =0 => x = 0

d) |x| = 123123 => x = ±123

Theo đề , ta có : \(12a=72b\)

\(\Rightarrow\dfrac{a}{72}=\dfrac{b}{12}\)\(a-b=80\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\dfrac{a}{72}=\dfrac{b}{12}=\dfrac{a-b}{72-12}=\dfrac{80}{60}=\dfrac{4}{3}\)

\(\Rightarrow a=\dfrac{4}{3}.72=96\)

\(\Rightarrow b=\dfrac{4}{3}.12=16\)

6 tháng 7 2017

Ta có: 12 . a = 72 . b => \(\dfrac{a}{72}=\dfrac{b}{12}\) và a - b = 80

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{72}=\dfrac{b}{12}=\dfrac{a-b}{72-12}=\dfrac{80}{60}=\dfrac{4}{3}\)

a = \(\dfrac{4}{3}.72=96\)

b = \(\dfrac{4}{3}.12=16\)

11 tháng 3 2017

Gọi 3 số cần tìm là x, y, z. Theo bài ra ta có:

15x=10y=6z

\(\Rightarrow\)\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)

Đặt \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)=k. Ta có:
x=2k, y=3k, z=5k.

Mà BCNN(x, y, z) =1680.

\(\Rightarrow\)BCNN(2k, 3k, 5k)=1680

\(\Rightarrow\)k.BCNN(2, 3, 5)=1680

\(\Rightarrow\)k.30=1680

\(\Rightarrow\)k=56

\(\Rightarrow\) x=2.56=112

y=3.56=168

z=5.56=280

Vậy 3 số cần tìm là:112,168,280

Học tốt!vui

11 tháng 3 2017

cảm ơn bn nhé!!!

26 tháng 3 2017

Câu hỏi của Nguyễn Trọng Phúc - Toán lớp 7 | Học trực tuyến

26 tháng 3 2017

thanks nhavui

28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )

7 tháng 9 2017

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{81}\)

<=> \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{9}\\x+\dfrac{1}{2}=-\dfrac{1}{9}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=-\dfrac{7}{18}\\x=-\dfrac{11}{18}\end{matrix}\right.\)

7 tháng 9 2017

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{81}\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{9}\\x+\dfrac{1}{2}=-\dfrac{1}{9}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{18}\\x=-\dfrac{11}{18}\end{matrix}\right.\)

Vậy \(x_1=-\dfrac{7}{18};x_2=-\dfrac{11}{18}\).