Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(5x - 4)(2 + x) = 5(x - 3)2
10x + 5x2 - 8 - 4x = 5(x2 - 6x + 9)
6x + 5x2 - 8 = 5x2 - 30x + 45
36x = 53
x = 53/36
Ta có: 2222 đồng dư với 3(mod 7)
=> 22222 đồng dư với 32(mod 7)
=> 22222 đồng dư với 9(mod 7)
=> 22222 đồng dư với 2(mod 7)
=> (22222)3 đồng dư với 23(mod 7)
=> 22226 đồng dư với 8(mod 7)
=> 22226 đồng dư với 1(mod 7)
=> (22226)925 đồng dư với 1925(mod 7)
=> 22225550 đồng dư với 1925(mod 7)
Vì 22222 đồng dư với 2(mod 7)
=>(22222)2 đồng dư với 22(mod 7)
=>22224 đồng dư với 4(mod 7)
=>22224.2222 đồng dư với 4.3(mod 7)
=>22225 đồng dư với 12(mod 7)
=>22225 đồng dư với 5(mod 7)
=>22225.22225550 đồng dư với 5.1(mod 7)
=>22225555 đồng dư với 5(mod 7)
Lại có:
5555 đồng dư với 4(mod 7)
=>55553 đồng dư với 43(mod 7)
=>55553 đồng dư với 64(mod 7)
=>55553 đồng dư với 1(mod 7)
=>(55553)740 đồng dư với 1740(mod 7)
=>55552220 đồng dư với 1(mod 7)
Vì 5555 đồng dư với 4(mod 7)
=>55552 đồng dư với 42(mod 7)
=>55552 đồng dư với 16(mod 7)
=>55552 đồng dư với 3(mod 7)
=>55552.55552220 đồng dư với 3.1(mod 7)
=>55552222 đồng dư với 3(mod 7)
=>22225555+55552222 đồng dư với 4+3(mod 7)
=>22225555+55552222 đồng dư với 7(mod 7)
=>22225555+55552222 đồng dư với 0(mod 7)
=>22225555+55552222 chia hết cho 7
=>ĐPCM
(x+a)(x+b)(x+c)
= [(x+a)(x+b)](x+c)
= [x²+(a+b)x+ab](x+c)
= [x²+(a+b)x+ab]x+[x²+(a+b)x+ab]c
= x³+(a+b)x²+abx+x²c+(a+b)cx+abc
=x³+(a+b+c)x²+(ab+bc+ca)x+abc
Học tốt nha!!!!!!!!!
Rút gọn à bn ?
\(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=x^3+x^2c+x^2b+xbc+ax^2+axc+abx+abc\)
Giúp mình đi các bạn
tìm giá trị nhỏ nhất của biểu thức sau :
(x+y)2-(1-x)(1+y)+2018
giúp mình nha !!!!
Ta có \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Tới đây bạn xét hai trường hợp nhé :)
(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)
=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)
=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)
2x3 - 32x = 0
=> 2x.(x2 - 16) = 0
=> 2x = 0 hoặc x2 - 16 = 0
=> x = 0 hoặc x2 = 16
=> x = 0 hoặc x thuộc {4 ; -4}
Vậy x thuộc {0 ; 4 ; -4}
Không bạn nha=))