K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 11 2021

\(y'=-3x^2+3=0\Rightarrow x=\pm1\)

\(y\left(-1\right)=3\) ; \(y\left(1\right)=7\) ; \(y\left(0\right)=5\) ; \(y\left(2\right)=3\)

\(\Rightarrow\min\limits_{\left[0;2\right]}y=3\)

 

AH
Akai Haruma
Giáo viên
27 tháng 6 2021

Bài 5:

\(y=m\sqrt{x^2-4x+7}-(3x-4)=\frac{(m^2-9)x^2+(24-4m^2)x+(7m^2-16)}{m\sqrt{x^2-4x+7}+3x-4}\)

Để đths $y$ có TCN thì:\(\lim\limits_{x\to \pm \infty}y\) hữu hạn

Để điều này xảy ra thì $m^2-9=0\Leftrightarrow m=\pm 3$

Kiểm tra lại thấy cả 2 giá trị này đều thỏa mãn. 

AH
Akai Haruma
Giáo viên
27 tháng 6 2021

Bài 6: Tiệm cận của ĐTHS chứ làm gì có tiệm cận hàm số hả bạn? 

a. 

\(y=\frac{x^2-3x+2}{2x^2+x-1}=\frac{x^2-3x+2}{(2x-1)(x+1)}\)

$(2x-1)(x+1)=0\Leftrightarrow x=\frac{1}{2}$ hoặc $x=-1$

Do đó TCĐ của ĐTHS là $x=\frac{1}{2}$ và $x=-1$

Mặt khác: \(\lim\limits_{x\to \pm \infty}\frac{x^2-3x+2}{2x^2+x-1}=\frac{1}{2}\) nên $y=\frac{1}{2}$ là TCN của ĐTHS.

b.

$x+1=0\Leftrightarrow x=-1$ nên $x=-1$ là TCĐ của đths

$\lim\limits_{x\to \pm \infty}\frac{1-x}{1+x}=-1$ nên $y=-1$ là TCN của đths

 

25 tháng 10 2021

a. Để hàm số đã cho có một cực trị thì -m(2m-1)>0 \(\Rightarrow\) 0<m<1/2.

b. Để hàm số đã cho có ba cực trị thì -m(2m-1)<0 \(\Rightarrow\) m<0 hoặc m>1/2.

c. Để hàm số đã cho có một cực trị là cực đại thì m<0 và -(2m-1)<0, suy ra không có giá trị nào của m thỏa yêu cầu của bài toán.

 

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

24 tháng 4 2022

\(\Delta ABC\) đều cạnh là mấy a ? 

24 tháng 4 2022

Đề không cho ạ

AH
Akai Haruma
Giáo viên
27 tháng 11 2021

Câu 1:

PT hoành độ giao điểm: $3^{x^2+1}=5$

$x^2+1=\log_35$

$\Leftrightarrow x^2=\log_35-1>0$

$\Rightarrow$ pt hoành độ giao điểm có 2 nghiệm 

$\Rightarrow$ có 2 giao điểm giữa 2 đths. Đáp án C.

 

AH
Akai Haruma
Giáo viên
27 tháng 11 2021

Câu 2:

$4^{x^2-x}+2^{x^2-x+1}=3$
$\Leftrightarrow (2^{x^2-x})^2+2.2^{x^2-x}-3=0$

$\Leftrightarrow t^2+2t-3=0$ (đặt $2^{x^2-x}=t$)

$\Leftrightarrow (t-1)(t+3)=0$

$\Rightarrow t=1$ (do $t>0$)

$\Leftrightarrow 2^{x^2-x}=1\Leftrightarrow x^2-x=0$

$\Rightarrow x=0$ hoặc $x=1$

$\Rightarrow |x_1-x_2|=1$

Đáp án D.

9 tháng 3 2022

ah/chị tham khảo ạ:

undefined

Chọn B

NV
23 tháng 1 2022

Mặt cầu tâm \(I\left(1;1;0\right)\) bán kính \(R=5\)

\(\Rightarrow IA=\sqrt{6^2+8^2}=10=2R\) 

Gọi C là trung điểm IA \(\Rightarrow C\left(4;5;0\right)\Rightarrow IC=R=5\Rightarrow C\in\left(S\right)\)

Gọi D là trung điểm IC \(\Rightarrow D\left(\dfrac{5}{2};3;0\right)\), đồng thời do D là trung điểm IC \(\Rightarrow MD\perp IC\) và IM=IC=R hay tam giác MDF vuông tại D

Lại có: \(CM=CA=CI=R\Rightarrow\) tam giác AMI vuông tại M

\(\Rightarrow\Delta_VMID\sim\Delta_VAIM\) (chung góc I)

\(\Rightarrow\dfrac{MA}{MD}=\dfrac{AI}{AM}=\dfrac{2R}{R}=2\Rightarrow MA=2MD\)

\(\Rightarrow P=MA+2MB=2MD+2MB=2\left(MD+MB\right)\ge2DB=2\sqrt{\left(\dfrac{5}{2}\right)^2+\left(3-8\right)^2+0^2}=5\sqrt{5}\)