K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a) Để hàm số đồng biến thì m+1>0

hay m>-1

b) Để hàm số đi qua điểm A(2;4) thì

Thay x=2 và y=4 vào hàm số, ta được:

\(\left(m+1\right)\cdot2=4\)

\(\Leftrightarrow m+1=2\)

hay m=1

c) Để hàm số đi qua điểm B(2;-4) thì

Thay x=2 và y=-4 vào hàm số, ta được:

\(2\left(m+1\right)=-4\)

\(\Leftrightarrow m+1=-2\)

hay m=-3

Bài 1:

b) Ta có: \(5\cdot\sqrt{25a^2}-25a\)

\(=5\cdot5\cdot\left|a\right|-25a\)

\(=-25a-25a=-50a\)

b) Đặt (d3): y=ax+b

Vì (d3)//(d1) nên \(a=-\dfrac{2}{3}\)

Vậy: (d3): \(y=\dfrac{-2}{3}x+b\)

Thay x=6 vào (d2), ta được:

\(y=-2\cdot6+4=-12+4=-8\)

Thay x=6 và y=-8 vào (d3), ta được:

\(\dfrac{-2}{3}\cdot6+b=-8\)

\(\Leftrightarrow b=-4\)

Vậy: (d3): \(y=\dfrac{-2}{3}x-4\)

23 tháng 7 2021

Thanks bạn nhìu nha hay giúp mình 

 

a) Ta có: \(\sqrt{12+2\sqrt{35}}-\sqrt{12-2\sqrt{35}}\)

\(=\sqrt{7}+\sqrt{5}-\sqrt{7}+\sqrt{5}\)

\(=2\sqrt{5}\)

b) Ta có: \(\left(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}+2\right)\left(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}-2\right)\)

\(=\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\)

=1

c) Ta có: \(\dfrac{7\sqrt{2}+2\sqrt{7}}{\sqrt{14}}-\dfrac{5}{\sqrt{7}+\sqrt{2}}\)

\(=\sqrt{7}+\sqrt{2}-\sqrt{7}+\sqrt{2}\)

\(=2\sqrt{2}\)

14 tháng 12 2021

\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)

Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)

\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)

Vậy \(x=2\)

14 tháng 12 2021

\(2,ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)

Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy ...

Bài 1: 

a: \(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

b: \(=\sqrt{11}+\sqrt{2}-\sqrt{11}-\sqrt{7}-\sqrt{2}=-\sqrt{7}\)

b: Xét ΔDEF vuông tại D có DK là đường cao

nên \(DF^2=EF\cdot KF\)