Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(x+2\right)^3-\left(x-2\right)^3\)
\(=\left[\left(x+2\right)-\left(x-2\right)\right]\left[\left(x+2\right)^2+\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\right]\)
a. 5-(x-6)=4(3-2x)
<=>5-x+6 = 12-8x
<=>-x+8x =-5-6+12
<=>7x=1
<=>x=\(\frac{1}{7}\)
Vậy phương trình có nghiệm là S= ( \(\frac{1}{7}\))
c.7 -(2x+4) =-(x+4)
<=> 7-2x-4=-x-4
<=>-2x+x= -7+4-4
<=> -x = -7
<=> x=7
Vậy phương trình có nghiệm là S=(7)
1.a) \(\Leftrightarrow\) 3x+10-2x =0
\(\Leftrightarrow\text{ 3x-2x=-10}\)
\(\Leftrightarrow x=-10\)
b) coi lại có thiếu ngoặc ko nhé
cứ nhân vào dấu ngoặc rồi làm như thường
Ví dụ cho bạn một bài, còn lại tương tự.
a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)
\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)
Vậy phương trình vô nghiệm.
a, (x4-2x3+2x-1):(x2-1) = \(\frac{\left(x^4-1\right)-\left(2x^3-2x\right)}{x^2-1}\)
= \(\frac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\) =\(\frac{\left(x^2-1\right)\left(x^2+1-2x\right)}{x^2-1}\)
= \(x^2+1-2x\)= \(\left(x-1\right)^2\)
b, (8x3-6x2-5x+3):((4x+3)
a) \(x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)
b) \(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
c) \(2x^3-x^2-8x+4\)
\(=x^2\left(2x-1\right)-4\left(2x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\)
d) \(x\left(x-y\right)^2+y\left(x-y\right)^2-xy+x^2\)
\(=\left(x+y\right)\left(x-y\right)^2+x\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2+x\right)\)
e) \(2x^2-5x+2\)
\(=\left(2x^2-x\right)-\left(4x-2\right)\)
\(=x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
a: \(=\dfrac{6x^2-3x+4x^2+2x}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{\left(2x-1\right)^2}{2x\left(4x+5\right)}\)
\(=\dfrac{10x^2+x}{\left(2x+1\right)}\cdot\dfrac{2x-1}{2x\left(4x+5\right)}\)
\(=\dfrac{\left(10x^2+x\right)\left(2x-1\right)}{2x\cdot\left(2x+1\right)\left(4x+5\right)}\)
b: \(=\left(\dfrac{x}{\left(5x-1\right)\left(5x+1\right)}\cdot\dfrac{x\left(5x+1\right)}{5x}\right)\cdot\dfrac{x\left(5x+1\right)}{5x-1}+\dfrac{x}{5x-1}\)
\(=\dfrac{x}{5\left(5x-1\right)}\cdot\dfrac{x\left(5x+1\right)}{5x-1}+\dfrac{x}{5x-1}\)
\(=\dfrac{x^2\left(5x+1\right)+5x\left(5x-1\right)}{5\left(5x-1\right)^2}\)
\(=\dfrac{5x^3+x^2+25x^2-5x}{5\left(5x-1\right)^2}=\dfrac{5x^3+26x^2-5x}{5\left(5x-1\right)^2}\)
c: \(=\dfrac{x+1}{x-2}+\dfrac{1-3x}{x\left(x^2+1\right)}\cdot\dfrac{x^2+1}{x-1}\)
\(=\dfrac{x+1}{x-2}+\dfrac{1-3x}{x\left(x-1\right)}\)
\(=\dfrac{x^3-x+\left(1-3x\right)\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)}\)
\(=\dfrac{x^3-x+x-2-3x^2+6x}{x\left(x-1\right)\left(x-2\right)}=\dfrac{x^3-3x^2+6x-2}{x\left(x-1\right)\left(x-2\right)}\)