Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)
Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản.
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
\(ĐK:a\ne-1\)
Ta có : \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
b, Gọi b là ước chung lớn nhất của \(a^2+a-1\) và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\) là số lẻ nên b là số lẻ
Mặt khác : \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]:b\)
Nên \(b=1\) tức là \(a^2+a-1\) và \(a^2+a+1\) nguyên tố cùng nhau
Vậy biểu thức A là một phân số tối giản
a) Ta có :
\(A=\dfrac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)
b) Gọi \(d=ƯCLN\left(a^2+a-1;a^2+a+1\right)\)\(\)(\(a\in Z;d\in N\))
\(\Rightarrow\left\{{}\begin{matrix}a^2+a-1⋮d\\a^2+a+1⋮d\end{matrix}\right.\)
\(\Rightarrow2⋮d\)
Vì \(d\in N;2⋮d\Rightarrow d\in\left\{1;2\right\}\) \(\left(1\right)\)
Lại có :
- Nếu a là số lẻ thì \(a^2+a+1;a^2+a-1\) là số lẻ
- Nếu a là số chẵn thì \(a^2+a+1;a^2+a-1\) là số lẻ
\(\Rightarrow\) \(a^2+a+1;a^2+a-1\) là số lẻ với mọi a hay 2 số này ko có ước chẵn\(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow d=1\)
\(\RightarrowƯCLN\left(a^2+a+1;a^2+a-1\right)=1\)
\(\Rightarrow\) Phân số \(\dfrac{a^2+a-1}{a^2+a+1}\) nguyên tố cùng nhau với mọi a