Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH∼ΔBDA
b: Xét ΔHAD vuông tại H và ΔHBA vuông tại H có
\(\widehat{HAD}=\widehat{HBA}\)
Do đó: ΔHAD∼ΔHBA
Suy ra: HA/HB=HD/HA
hay \(HA^2=HB\cdot HD\)
a) Xét \(\Delta ADH\) và \(\Delta BDA:\)
\(\widehat{H}=\widehat{A}\left(=90^o\right).\)
\(\widehat{D}\) chung.
\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g-g\right).\)
b) Xét \(\Delta BDA\) và \(\Delta BAH:\)
\(\widehat{BAD}=\widehat{BHA}\left(=90^o\right).\)
\(\widehat{B}\) chung.
\(\Rightarrow\Delta BDA\sim\) \(\Delta BAH\left(g-g\right).\)
Mà \(\Delta ADH\sim\Delta BDA\left(cmt\right).\)
\(\Rightarrow\Delta ADH\sim\Delta BAH.\)
\(\Rightarrow\dfrac{AH}{BH}=\dfrac{DH}{AH}\) (2 cạnh tương ứng).
\(\Rightarrow AH^2=DH.BH.\)
Bài 1:
Để B là số tự nhiên thì \(\left\{{}\begin{matrix}2x-10⋮x-1\\\left[{}\begin{matrix}x>5\\x< 1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\\x< 0\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{-1;-3;-7\right\}\)
Bài 3:
Xét ΔIAB có
\(\widehat{AIB}+\widehat{IAB}+\widehat{IBA}=180^0\)
\(\Leftrightarrow\widehat{IAB}+\widehat{IBA}=115^0\)
hay \(\widehat{DAB}+\widehat{ABC}=230^0\)
Xét tứ giác ABCD có
\(\widehat{D}+\widehat{C}+\widehat{DAB}+\widehat{CBA}=360^0\)
\(\Leftrightarrow\widehat{D}+\widehat{C}=150^0\)
mà \(\widehat{C}-\widehat{D}=10^0\)
nên \(2\cdot\widehat{C}=160^0\)
\(\Leftrightarrow\widehat{C}=80^0\)
\(\Leftrightarrow\widehat{D}=70^0\)
Bài 2:
a: =>168x+20=6x-21
=>162x=-41
hay x=-41/162
b: \(\Leftrightarrow2\left(3x-8\right)=3\left(5-x\right)\)
=>6x-16=15-3x
=>9x=31
hay x=31/9
c: \(\Leftrightarrow4\left(x^2+8x-20\right)-\left(x+4\right)\left(x+10\right)=3\left(x^2+2x-8\right)\)
\(\Leftrightarrow4x^2+32x-80-x^2-14x-40-3x^2-6x+24=0\)
=>12x-96=0
hay x=8
Bài 2:
\(a,=x\left(x+7\right)\\ b,=x\left(x^2+4x+4\right)=x\left(x+2\right)^2\)
Bài 3:
\(a,\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^2-x-2x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 4:
\(a,\widehat{D}=360^0-\widehat{A}-\widehat{B}-\widehat{C}=150^0\)
\(b,\dfrac{x+10}{2}=12\Leftrightarrow x+10=24\Leftrightarrow x=14\left(cm\right)\)
2:
Gọi số sách lúc đầu ở tủ 1 và tủ 2 lần lượt là a,b
Theo đề, ta có:
a+b=600 và a-80=1/2(b+80)
=>a=280 và b=320
a.\(A=\left(\dfrac{x^2-3}{x^2-9}+\dfrac{1}{x-3}\right):\dfrac{x}{x+3}\)
\(A=\left(\dfrac{x^2-3+\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x}{x+3}\)
\(A=\left(\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\right).\dfrac{x+3}{x}\)
\(A=\dfrac{\left(x^2+x\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x\left(x+1\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x+1}{x-3}\)
b.\(A=3\)
\(\Leftrightarrow\dfrac{x+1}{x-3}=3\)
\(\Leftrightarrow\dfrac{x+1}{x-3}=\dfrac{3\left(x-3\right)}{x-3}\)
\(\Leftrightarrow x+1=3\left(x-3\right)\)
\(\Leftrightarrow x+1=3x-9\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\left(tm\right)\)
Vậy \(x=5\) thì \(A=3\)