Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{2^{15}\cdot3^8}{3^6\cdot2^6\cdot2^9}+\dfrac{9^3\cdot71}{3^2\cdot71}=3^2+81=90\)
\(=\dfrac{2^4\cdot5^4\cdot3^6}{2^8\cdot3^4}=3^2\cdot5^4\cdot\dfrac{1}{2^4}\)
\(\Leftrightarrow\frac{5}{7}+\left|\frac{1}{2}-x\right|=\frac{11}{4}\)
\(\Leftrightarrow\left|\frac{1}{2}-x\right|=\frac{11}{4}-\frac{5}{7}=\frac{77-20}{28}=\frac{57}{28}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}-x=\frac{57}{28}\\\frac{1}{2}-x=-\frac{57}{28}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}-\frac{57}{28}=\frac{14-57}{28}=\frac{-43}{28}\\x=\frac{1}{2}+\frac{57}{28}=\frac{14+57}{28}=\frac{71}{28}\end{cases}}\)
PT có 2 nghiệm là: -43/28 và 71/28
TH1 : \(x< \frac{1}{2}\), ta có:
\(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)
\(-\frac{5}{7}-\frac{1}{2}+x=-\frac{11}{4}\)
\(-\frac{17}{14}+x=-\frac{11}{4}\)
\(x=-\frac{11}{4}-\left(-\frac{17}{14}\right)\)
\(x=-\frac{43}{28}\)( thỏa mãn )
TH2 : \(x\ge\frac{1}{2}\); ta có:
\(-\frac{5}{7}-\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
\(-\frac{5}{7}-x+\frac{1}{2}=-\frac{11}{4}\)
\(-\frac{3}{14}-x=-\frac{11}{4}\)
\(x=-\frac{3}{14}-\left(-\frac{11}{4}\right)\)
\(x=\frac{71}{28}\)(thỏa mãn)
Vậy \(\orbr{\begin{cases}x=\frac{-43}{28}\\x=\frac{71}{28}\end{cases}}\)
Đề:........
<=> (24)x < (27)4
<=> 24x < 228
<=> 4x < 28
<=> x < 7
Vậy x = {0; 1; 2; 3; 4; 5; 6}
Đặt mẫu số là B
Ta có: B = 1 + 3 + 32 + 33 + ...+ 32017 + 32018 - 32019
Đặt C = 1 + 3 + 32 +... + 32018
3.C = 3 + 32 + 33 + 34 + ... + 32018 + 32019
3C - C = (3 + 32 + 33 +...+ 32018 + 32019) - (1+3+...+32018)
2C = 32019 - 1
C = \(\dfrac{3^{2019}-1}{2}\)
B = \(\dfrac{3^{2019}-1}{2}\) - 32019
B = \(\dfrac{3^{2019}-1-2.3^{2019}}{2}\)
B = \(\dfrac{-3^{2019}-1}{2}\)
A = \(\dfrac{3^{2019}+1}{\dfrac{-3^{2019}-1}{2}}\)
A = -2
Chọn - 2 nhé em
Áp dụng t/c dtsbn:
\(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}=\dfrac{a+b-c+a-b+c-a+b+c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)
\(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2a.2b.2c}{abc}=8\)