Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.
Đáp án A đúng
\(y'=9x^2+3>0;\forall v\in R\)
6.
Đáp án B đúng
\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)
1.
\(y'=6x^2+6\left(m-1\right)x+6\left(m-2\right)=6\left(x+1\right)\left(x+m-2\right)\)
\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-m+2\end{matrix}\right.\)
Phương trình nghịch biến trên đoạn có độ dài lớn hơn 3 khi:
\(\left|-1-\left(-m+2\right)\right|>3\)
\(\Leftrightarrow\left|m-3\right|>3\Rightarrow\left[{}\begin{matrix}m>6\\m< 0\end{matrix}\right.\)
2.
\(y'=-3x^2+6x+m-1\)
\(\Delta'=9+3\left(m-1\right)>0\Rightarrow m>-2\)
Gọi \(x_1;x_2\) là 1 nghiệm của pt \(-3x^2+6x+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=\dfrac{-m+1}{3}\end{matrix}\right.\)
Hàm đồng biến trên đoạn có độ dài lớn hơn 1 khi:
\(\left|x_1-x_2\right|>1\)
\(\Leftrightarrow\left(x_1-x_2\right)^2>1\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2>1\)
\(\Leftrightarrow4-\dfrac{-4m+4}{3}>1\)
\(\Rightarrow m>-\dfrac{5}{4}\) \(\Rightarrow m=-1\)
Có đúng 1 giá trị nguyên âm của m thỏa mãn
3.
\(y'=x^2+6\left(m-1\right)x+9\)
\(\Delta'=9\left(m-1\right)^2-9>0\Rightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\left(m-1\right)\\x_1x_2=9\end{matrix}\right.\)
\(\left|x_1-x_2\right|=6\sqrt{3}\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=108\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=108\)
\(\Leftrightarrow36\left(m-1\right)^2-36=108\)
\(\Rightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
Có 1 giá trị nguyên âm của m thỏa mãn
1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy
2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15
3,
*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)
*) 2+3=8 hay 2.(2+3)-2=8
4+5=32 hay 4.(4+5)-4=32
5+8=60 hay 5.(5+8)-5=60
6+7=72 hay 6.(6+7)-6=72
7+8= 7.(7+8)-7=98
Hướng dẫn thí sinh tham gia thi thử trên OLM-ĐGNL: https://dgnl.olm.vn/tin-tuc/huong-dan-hoc-sinh-tham-gia-thi-thu-tren-olm-dgnl-643823112
Câu 4 đề 1:
Biến đổi miền D: \(x^2+y^2\le2x\Leftrightarrow x^2-2x+1+y^2\le1\)
\(\Leftrightarrow\left(x-1\right)^2+y^2\le1\)
Đặt \(\left\{{}\begin{matrix}x-1=r.cos\varphi\\y=r.sin\varphi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1+r.cos\varphi\\y=r.sin\varphi\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}0\le r\le1\\0\le\varphi\le2\pi\end{matrix}\right.\)
\(I=\int\limits^{2\pi}_0d\varphi\int\limits^1_0\left(2+r.cos\varphi\right).rdr=\int\limits^{2\pi}_0d\varphi\int\limits^1_0\left(2r+r^2.cos\varphi\right)dr\)
\(=\int\limits^{2\pi}_0d\varphi.\left(r^2+\dfrac{r^3}{3}cos\varphi\right)|^1_0=\int\limits^{2\pi}_0\left(1+\dfrac{1}{3}cos\varphi\right)d\varphi=2\pi\)
Câu 4 đề 2: sao câu này người ta ko cho biết chiều tính tích phân nhỉ? Coi như tính theo chiều dương đi.
\(\left\{{}\begin{matrix}P=x^2+xy\\Q=x+2xy\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}P'_y=x\\Q'_x=2y+1\end{matrix}\right.\)
Miền lấy tích phân là miền kín, áp dụng định lý Green:
\(I=\int\limits\int\limits^{ }_D\left(Q'_x-P'_y\right)dxdy=\int\limits\int\limits^{ }_D\left(2y-x+1\right)dxdy\)
Pt AC có dạng \(x=1\) và pt \(BC\) có dạng \(x=3-y\)
Chiếu lên Oy \(\Rightarrow\left\{{}\begin{matrix}0\le y\le2\\1\le x\le3-y\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^2_0dy\int\limits^{3-y}_1\left(2y-x+1\right)dx\)
\(=\int\limits^2_0dy\left(\left(2y+1\right)x-\dfrac{x^2}{2}\right)|^{3-y}_1\)
\(=\int\limits^2_0\left(-\dfrac{5}{2}y^2+6y-2\right)dy=\dfrac{4}{3}\)