K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

ko đc đăng câu hỏi bằng hình ảnh

18 tháng 12 2016

Kệ Người ta nhiều chuyện

 

6 tháng 8 2017

Bài 1 :

\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)

\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)

\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)

6 tháng 8 2017

Siêu quá, toán lớp 9 mà làm được rùi!

22 tháng 11 2017

Đề 1: TỰ LUẬN

Câu 1: sin 60o31' = cos 29o29'

cos 75o12' = sin 14o48'

cot 80o = tan 10o

tan 57o30' = cot 32o30'

sin 69o21' = cos 20o39'

cot 72o25' = 17o35'

22 tháng 11 2017

- Chiều về mình làm cho nha nha vui Giờ mình đi học rồi thanghoa Bạn có gấp lắm hông leu

16 tháng 8 2017

Mọi người giúp mình với 2h mình đi học rùi

Bài 1: 

a: ĐKXĐ: x>0; x<>1

b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)

c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:

\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)

d: Để |A|>A thì A>0

=>\(\sqrt{x}-1>0\)

hay x>1

16 tháng 8 2017

a, không nhìn rõ

b, \(\dfrac{a+2\sqrt{a}+1}{a-1}\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)

16 tháng 8 2017

đó đâu phải là hằng đẳng thức

24 tháng 8 2017

Lam cau C dung ko ? cau D) chua bt lam :V \

a) DKXD : x \(\ne\pm2\)

C)

Ta cos :

A = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

ma : A < \(\dfrac{5}{3}< =>\dfrac{\sqrt{x}+3}{\sqrt{x}-2}< \dfrac{5}{3}< =>3\left(\sqrt{x}+3\right)< 5\left(\sqrt{x}-2\right)< =>\) \(3\sqrt{x}+9< 5\sqrt{x}-10< =>-2\sqrt{x}< -19< =>\sqrt{x}>\dfrac{19}{2}=>x=\dfrac{361}{4}\)

Vay...............

24 tháng 8 2017

Trình độ còn non quá :v

d/ A = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\dfrac{5}{\sqrt{x}-2}\)

Để \(A\in Z\) \(\Rightarrow\dfrac{5}{\sqrt{x}-2}\in Z\)

\(\Rightarrow5⋮\sqrt{x}-2\) \(\Rightarrow\sqrt{x}-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{3;1;7;-3\right\}\)

\(\Rightarrow x\in\left\{9;1;49\right\}\)

25 tháng 5 2017

3) Sửa ab+bc+ca/3 thành ab+bc+ca/2; Thêm đk: a;b;c > 0

Đặt \(A=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(A=\dfrac{\dfrac{1}{a^2}}{a\left(b+c\right)}+\dfrac{\dfrac{1}{b^2}}{b\left(c+a\right)}+\dfrac{\dfrac{1}{c^2}}{c\left(a+b\right)}\)

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

\(A\ge\dfrac{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\)

\(A\ge\dfrac{\dfrac{\left(bc+ac+ab\right)^2}{abc^2}}{2\left(ab+bc+ca\right)}=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)

Dấu "=" xảy ra khi a = b = c = 1

25 tháng 5 2017

còn phải làm bài nào ko hốt nốt

2 tháng 9 2016

 Bảo Duy Cute sướng wá ha. có ngừi chúc n.n lun

2 tháng 9 2016

uk...thanks e