K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2023

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

10 tháng 12 2023

loading...  

2 tháng 5 2022

cho mình hỏi đề bạn viết có đúng không vậy

Cho △ABC vuông tại A (AB<AC) có đường cao AH

a) Chứng minh : △HBA=△ABC  ( chứng minh kiểu gì)

b)Chứng minh: AH2=HB.HC

c)Gọi E là điểm đối xứng với H qua điểm A, M là trung điểm của AH. Chứng minh CM⊥BE tại K

2 tháng 5 2022

đề sai rồi ạ 

Xét ΔMNP vuông tại M và ΔENM vuông tại E có

\(\widehat{N}\) chung

Do đó: ΔMNP∼ΔENM

Suy ra: MN/EN=NP/NM

hay \(MN^2=NP\cdot NE\)

6 tháng 10 2019

1) \(\left(x-3\right)\left(x-5\right)+2\)

\(=x^2-8x+15+2\)

\(=\left(x^2-8x+16\right)+1\)

\(=\left(x-4\right)^2+1\)

Vì \(\left(x-4\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-4\right)^2+1\ge1>0;\forall x\)

Vậy....

2) tương tự

6 tháng 10 2019

\(1.\left(x-3\right)\left(x-5\right)+2\)

\(=x^2-8x+15+2\)

\(=x^2-2.4x+16+1\)

\(=\left(x-4\right)^2+1\)

Do \(\left(x-4\right)^2\ge0\)nên \(\left(x-4\right)^2+1\ge1\)

hay \(\left(x-3\right)\left(x-5\right)+2>0\)

4 tháng 5 2018

\(A=111.....111.10^{2017}+2222.....2222.10+5\)

\(=\frac{10^{2015}-1}{9}.10^{2017}+20.\frac{10^{2016}-1}{9}+5\)

\(=\frac{10^{4032}-10^{2017}+2.10^{2017}-20+45}{9}\)

\(=\frac{10^{4032}+2.5.10^{2016}+25}{9}\)

\(=\left(\frac{10^{2016}+5}{3}\right)^2\) là số chính phương (ĐPCM)

16 tháng 5 2019

đề bài bảo có 2005 số 2 nên phải là 10^2006 chứ bạn, mấy cái còn lại cũng thế!

NV
22 tháng 3 2023

a.

Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)

Xét hai tam giác HBA và CDB có:

\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)

b.

Xét hai tam giác AHD và BAD có:

\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)

c.

Áp dụng định lý Pitago cho tam giác vuông BAD:

\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Theo chứng minh câu b:

\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Áp dụng Pitago cho tam giác vuông AHD:

\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

NV
22 tháng 3 2023

loading...

17 tháng 8 2018

đặt M là n^3 -9n^2+2n.

TH1 : n có dạng 2k => M chia hết cho 2 (bạn  tự cm)

TH2 ; n có dạng 2k+1 => M = (2k+1)^3-9(2k+1)^2+2n

=8k^3+6k+12k^2+1-9(4k^2+4k+1)+2n = ... => M chia hết cho 2 với mọi n (1)

Xét n có dạng 3k => M chia hết cho 3

Xét n có dạng 3k+1 => n^3+2n=(3k+1)^3+2(3k+1)=27k^3+9k+27k^2+6k+3 chia hết cho 3 mà 9n^2 cũng chia hết cho 3 => M chia hết cho 3

Tương tự bạn xét n =3k+2....

=> M chia hết cho 3 vs mọi n (2)

Từ (1) (2) => M chia hết cho 6

17 tháng 8 2018

còn cách lm khác k bạn?

31 tháng 7 2016

 Ta có : n^3 - n (n € Z ) 
= n(n^2 -1) 
=n(n-1)(n+1) 
=(n-1)n(n+1) 
mà n-1 ; n ; n+1 là 3 số nguyên liên tiếp nên sẽ có 1 số chia hết cho 2 và một số chia hết cho 3 
=> (n-1)n(n+1) chia hết cho 2 và 3 
=> (n-1)n(n+1) chia hết cho 2.3 
=> (n-1)n(n+1) chia hết cho 6 (đpcm)