Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2b
do ABCDlà hbh
=> AD=BC
AB//CD=>NB//CD
AD//BC => AD//CK
vì NB//CD
=>\(\dfrac{DM}{MK}=\dfrac{AD}{CK}\) (theo hệ quả ta-lét)
mà AD=BC
=> \(\dfrac{DM}{MK}=\dfrac{BC}{CK}\) (*)
vì AD//CK
=> \(\dfrac{DN}{DK}=\dfrac{BC}{CK}\) (theo đl ta-lét) (**)
Từ (*) và (**) ta có
\(\dfrac{DN}{DK}=\dfrac{DM}{MK}\) =>\(\dfrac{MK}{DK}=\dfrac{DM}{DN}\)
ta có
\(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{MK}{DK}+\dfrac{DM}{DK}=\dfrac{DK}{DK}=1\) (đpcm)
Áp dụng định lí Menelaus :
\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1
Mà AE = CE, AD = 1/3BD
=> BF/CF = 3
=> CF = 1/2 BC
a,\(\Delta ABM\infty\Delta NDA\left(g.g\right)\Rightarrow\frac{AB}{ND}=\frac{BM}{DA}\Rightarrow AB^2=BM.DN\) (vì AB = AD)
b, Ta có: \(\frac{NM}{NA}=\frac{MC}{AD}\Rightarrow\frac{AD}{AN}=\frac{MC}{MN}\)
\(\frac{CN}{AB}=\frac{MN}{AM}\Rightarrow\frac{CN}{AD}=\frac{MN}{AM}\Rightarrow\frac{AD}{AM}=\frac{CN}{MN}\)
Vậy \(\left(\frac{AD}{AM}\right)^2+\left(\frac{AD}{AN}\right)^2=\left(\frac{CN}{MN}\right)^2+\left(\frac{MC}{MN}\right)^2=\frac{MC^2+CN^2}{MN^2}=1\)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
a) Xét \(\Delta AED\) và \(\Delta BEN\)
Ta có : \(\widehat{AED}=\widehat{BEN}\) ( đối đỉnh )
\(\widehat{ADE}=\widehat{BNE}\) ( Do \(\text{AD//BC}\) )
\(\Rightarrow\Delta AED\sim\Delta BEN\)
b) Ta có : \(\text{AE//DC}\) ( Do \(ABCD\) là hình bình hành )
\(\Rightarrow\dfrac{AM}{MC}=\dfrac{EM}{MD}\) ( theo định lí Ta-lét )
\(\Rightarrow MA.DM=MC.ME\)
c) Ta có :
\(\text{AE//DC}\)\(\Rightarrow\dfrac{DM}{DC}=\dfrac{CM}{AC}\)( theo định lí Ta-lét )
\(\text{AD//BC}\) \(\Rightarrow\dfrac{AM}{AC}=\dfrac{DM}{DN}\)( theo định lí Ta-lét )
\(\Rightarrow\dfrac{DM}{DE}+\dfrac{DM}{DN}=\dfrac{CM}{AC}+\dfrac{AM}{AC}=1\)
\(\Rightarrow\dfrac{1}{DE}+\dfrac{1}{DN}=\dfrac{1}{DM}\)