Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi hình như bạn ghi lộn đúng ko đoạn đường thẳng DE cach CB kéo dài tại K OQ
a) Ta có: AE+EB=AB(E nằm giữa A và B)
nên AE=AB-EB=12-3=9(cm)
Áp dụng định lí Pytago vào ΔAED vuông tại A, ta được:
\(DE^2=AD^2+AE^2\)
\(\Leftrightarrow DE^2=12^2+9^2=225\)
hay DE=15(cm)
Vậy: DE=15cm
\
a) Xét tam giác EAD và tam giác EBK có :
\(\widehat{EAD}=\widehat{EBK}\left(=90^o\right)\)
\(\widehat{AED}=\widehat{KEB}\left(đđ\right)\)
\(\Rightarrow\) Tam giác EAD đồng dạng với tam giác EBK ( g-g ) ( đpcm )
b) Do tam giác EAD đồng dạng với tam giác EBK ( chứng minh ở câu a )
\(\Rightarrow\widehat{EKB}=\widehat{EDA}\)
Xét tam giác ADE và tam giác CKD có :
\(\widehat{EKB}=\widehat{EDA}\)
\(\widehat{EAD}=\widehat{KCD}\left(=90^o\right)\)
\(\Rightarrow\) Tam giác ADE đồng dạng với tam giác CKD ( g-g )
\(\Rightarrow\frac{AD}{AE}=\frac{KC}{CD}\) (1)
Mà CD = AD ( đều là cạnh của hình vuông ABCD ) (2)
Từ (1) và (2) :
\(\Rightarrow\frac{AD}{AE}=\frac{KC}{AD}\)
\(\Leftrightarrow AD^2=KC\times AE\left(đpcm\right)\)
c) Ta có : AB = 8 cm
Mà ABCD là hình vuông nên AB = BC = CD = AD = 8 cm
Theo giả thiết : \(BE=\frac{1}{4}AB\Rightarrow BE=2\left(cm\right)\)
\(\Rightarrow AE=AB-BE=8-2=6\left(cm\right)\)
Theo câu b , ta có : \(AD^2=KC\times AE\)
\(\Rightarrow8^2=KC\times6\)
\(\Leftrightarrow KC=\frac{32}{3}\left(cm\right)\)
Ta có :
\(S_{CDK}=\frac{CD\times CK}{2}=\frac{8\times\frac{32}{3}}{2}=\frac{128}{3}\left(cm^2\right)\)
Vậy khi độ dài AB = 8 cm thì \(S_{CDK}=\frac{128}{3}cm^2\)
a: Xet ΔEAD và ΔEBF có
góc EAD=góc EBF
góc AED=góc BEF
=>ΔEAD đồng dạng với ΔEBF
=>AD/BF=EA/EB
=>18/BF=9/6=3/2
=>BF=12cm
a: Xét ΔEAD và ΔEBK có
góc EAD=góc EBK
góc AED=góc BEK
=>ΔEAD đồng dạng với ΔEBK
b: Xét ΔAED và ΔHDC có
góc AED=góc HDC
góc A=góc DHC
=>ΔAED đồng dạngvới ΔHDC
=>AE/HD=AD/HC
=>AE*HC=HD*AD
d: CD^2+CB*KB
=BC^2+BC*KB
=BC*(BC+KB)
=BC*KC
=CD*KC=CH*KD
a: Xét ΔFEB và ΔFDC có
góc FEB=góc FDC
góc F chung
=>ΔFEB đồng dạng với ΔFDC
Xét ΔEAD và ΔEBF có
góc EAD=góc EBF
góc AED=góc FEB
=>ΔEAD đồng dạng với ΔEBF
Xét ΔABD và ΔCDB có
góc ABD=góc CDB
góc A=góc C
=>ΔABD đồng dạng với ΔCDB
Xét ΔABC và ΔCDA có
góc ABC=góc CDA
góc BAC=góc DCA
=>ΔABC đồng dạng với ΔCDA
b) Ta có: AD+DC=AC(D nằm giữa A và C)
nên DC=AC-AD=3-1=2(cm)
Ta có: DE=AD(gt)
mà AD=1cm(cmt)
nên DE=1cm
Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)
\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)
Xét ΔBDE và ΔCDB có
\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)
\(\widehat{BDE}\) chung
Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)
a) Ta có: AD+DE+EC=AC
mà AD=DE=EC(gt)
nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=1+1=2\)
hay \(BD=\sqrt{2}cm\)
Vậy: \(BD=\sqrt{2}cm\)