K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5: 

a) Ta có: \(A=\left(\dfrac{4x+5\sqrt{x}-1}{x\sqrt{x}+2x-\sqrt{x}-2}-\dfrac{3\sqrt{x}+1}{x+\sqrt{x}-2}\right):\dfrac{x+4\sqrt{x}+4}{x-1}\)

\(=\left(\dfrac{4x+5\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(3\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{4x+5\sqrt{x}-1-3x-3\sqrt{x}-\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)^2}\)

\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)^3}\)

\(=\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\)

b) Ta có: \(A-1=\dfrac{\sqrt{x}-1-x-4\sqrt{x}-4}{x+4\sqrt{x}+4}\)

\(=\dfrac{-\left(x+3\sqrt{x}+5\right)}{x+4\sqrt{x}+4}\)

\(=\dfrac{-\left(x+2\cdot\sqrt{x}\cdot\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{11}{4}}{x+4\sqrt{x}+4}< 0\forall x\) thỏa mãn ĐKXĐ

nên A<1

 

ĐẶT x-1=a  , x+3=b   (a,b cùng dấu)

\(PT\Leftrightarrow ab+2a\sqrt{\frac{b}{a}}=8\)

\(\Leftrightarrow2a\sqrt{\frac{b}{a}}=8-ab\)

\(\Leftrightarrow4a^2\frac{b}{a}=64-16ab+a^2b^2\)

\(\Leftrightarrow a^2b^2-20ab+64=0\)

\(\Leftrightarrow\left(ab-10\right)^2-36=0\)

\(\Leftrightarrow\left(ab-4\right)\left(ab-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}ab=4\\ab=16\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+3\right)=4\\\left(x-1\right)\left(x+3\right)=16\end{cases}}\)

Đến đây đơn giản rồi bn tự giải nhé

26 tháng 7 2019

ĐK:....\(\frac{x+3}{x-1}\ge0\)

<=> \(\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}+1=9\)

<=> \(\left(\sqrt{\left(x-1\right)\left(x+3\right)}+1\right)^2=9\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\left(x-1\right)\left(x+3\right)}=2\\\sqrt{\left(x-1\right)\left(x+3\right)}=-4\left(loai\right)\end{cases}}\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=4\)

Em tự làm tiếp nhé

18 tháng 10 2021

1: Ta có: \(\sqrt{x^2+3x+2}=1\)

\(\Leftrightarrow x^2+3x+2=1\)

\(\Leftrightarrow x^2+3x+1=0\)

\(\text{Δ}=3^2-4\cdot1\cdot1=5\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{5}}{2}\\x_2=\dfrac{-3+\sqrt{5}}{2}\end{matrix}\right.\)

18 tháng 10 2021

Bạn k thể trả lời hết đc à?

Bài 3: 

a: \(P=\sqrt{a}+2+2+\sqrt{a}=2\sqrt{a}+4\)

10 tháng 8 2021

bài 2

a) ĐKXĐ: a\(\ge\)0, a\(\ne\)1

b)P=\(\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\).\(\dfrac{1+\sqrt{a}}{\sqrt{a}}\)

P=\(\dfrac{2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{1+\sqrt{a}}{\sqrt{a}}\)

P=\(\dfrac{2}{1-\sqrt{a}}\)

c) thay a=4 vào biểu thức ta có

P=\(\dfrac{2}{1-\sqrt{4}}\)=\(\dfrac{2}{1-2}\)=-2

d) để P=9 thì

\(\dfrac{2}{1-\sqrt{a}}=9\)\(\Rightarrow\)2=9(1-\(\sqrt{a}\))

\(\Rightarrow\)2=9-\(9\sqrt{a}\)\(\Rightarrow\)\(9\sqrt{a}=7\)\(\Rightarrow\)\(\sqrt{a}=\dfrac{7}{9}\)

\(\Rightarrow a=\dfrac{49}{81}\)

10 tháng 8 2021

bài 3

a) \(\sqrt{9x^2}=4\Rightarrow3x=4\)\(\Rightarrow\)\(x=\dfrac{4}{3}\)

b)\(\Rightarrow\)\(\left(x-\sqrt{5}\right)^2\)=0\(\Rightarrow x-\sqrt{5}=0\)

\(\Rightarrow x=\sqrt{5}\)

5:

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

b: \(MA=\sqrt{OM^2-OA^2}=R\sqrt{3}\)

=>\(AH=\dfrac{R\cdot R\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)

=>\(AB=R\sqrt{3}\)

30 tháng 7 2019

GTLN ak. bạn có nhầm đề k vậy, bạn xem lại đề đi.

30 tháng 7 2019

mình k ak

bạn giúp mình phân tích cái kia ra là đc

13 tháng 11 2021

a: CH=6cm

26 tháng 5 2021

Gọi x là chiều cao của tam giác ; y là cạnh đáy của tam giác (x,y > 0 )

* chiều cao  bằng 3/4 đáy:

   x = 3/4y
=> x - 3/4y = 0 (1)

* Nếu chiều cao tăng thêm...tăng thêm 9m^2:
1/2(y-2)(x+3) = 1/2xy + 9 (sau đó bạn tự giải phương trình nha) (2)
Từ (1),(2) suy ra chiều cao là 12m , cạnh đáy là 16m

26 tháng 5 2021

Bạn giải giúp mình cái hpt luôn đk, mình giải hoài k ra