K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2021

\(f'\left(x\right)=\dfrac{-3}{\left(x-1\right)^2}\) ; \(f''\left(x\right)=\dfrac{6}{\left(x-1\right)^3}\)

\(f'\left(x\right)+f''\left(x\right)=0\Leftrightarrow\dfrac{-3}{\left(x-1\right)^2}+\dfrac{6}{\left(x-1\right)^3}=0\) (\(x\ne1\))

\(\Leftrightarrow-3\left(x-1\right)+6=0\Rightarrow x=3\)

NV
8 tháng 3 2021

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{x+2017-\left(2015-x\right)}{\sqrt[3]{\left(x+2017\right)^2}+\sqrt[3]{\left(x+2017\right)\left(2015-x\right)}+\sqrt[3]{\left(2015-x\right)^2}}}{\dfrac{2000+x-\left(1998-x\right)}{\sqrt{2000+x}+\sqrt{1998-x}}}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{2000+x}+\sqrt{1998-x}}{\sqrt[3]{\left(x+2017\right)^2}+\sqrt[3]{\left(x+2017\right)\left(2015-x\right)}+\sqrt[3]{\left(2015-x\right)^2}}\)

\(=\dfrac{\sqrt{1999}+\sqrt{1999}}{\sqrt[3]{2016^2}+\sqrt[3]{2016^2}+\sqrt[3]{2016^2}}=\dfrac{2\sqrt{1999}}{3.24\sqrt[3]{294}}=\dfrac{\sqrt{1999}}{36\sqrt[3]{294}}\)

\(\Rightarrow a+b=1999+294\)

8 tháng 3 2021

undefined

NV
26 tháng 3 2021

Rất đơn giản, điểm \(A\left(1;-2\right)\) có \(x=1;y=-2\)

Do đó ảnh của nó qua phép biến hình \(f\) sẽ có tọa độ: \(\left\{{}\begin{matrix}x_{A'}=-x=-1\\y_{A'}=\dfrac{y}{2}=-1\end{matrix}\right.\)

\(\Rightarrow A'\left(-1;-1\right)\)

NV
10 tháng 5 2021

\(f'\left(x\right)=2x^2-x\)

\(f'\left(x\right)\ge0\Leftrightarrow2x^2-x\ge0\)

\(\Leftrightarrow x\left(2x-1\right)\ge0\Rightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le0\end{matrix}\right.\)

NV
2 tháng 9 2021

Đặt \(cosx-sinx=t\Rightarrow-\sqrt{2}\le t\le\sqrt{2}\)

\(t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\dfrac{1-t^2}{2}\)

Pt trở thành:

\(t\left(1+\dfrac{1-t^2}{2}\right)+1=0\)

\(\Leftrightarrow t^3-3t-2=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+1\right)^2=0\Rightarrow\left[{}\begin{matrix}t=2\left(loại\right)\\t=-1\end{matrix}\right.\)

\(\Rightarrow cosx-sinx=-1\)

\(\Leftrightarrow\sqrt[]{2}cos\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=cos\left(\dfrac{3\pi}{4}\right)\)

\(\Leftrightarrow...\)

2 tháng 9 2021

Dạ em cảm ơn ạ!! ^^

4 tháng 9 2021

than cay truoc roi

26 tháng 10 2021

cos x = cos\(\dfrac{\pi}{6}\)

x = \(\dfrac{\pi}{6}\) + k2\(\pi\) (1)

x = - \(\dfrac{\pi}{6}\) + k2\(\pi\) (2)

(1) thế k = -1 -> x = \(\dfrac{-11\pi}{6}\) (loại) *k= -2, k =-3,... loại luôn*

thế k = 0 -> x = \(\dfrac{\pi}{6}\) (nhận)

thế k = 1 -> x = \(\dfrac{13\pi}{6}\) (loại) *k=2, k=3,... loại luôn*

vậy (1) có 1 nghiệm
(2) thế k = - 1 -> x = \(\dfrac{-13\pi}{6}\) ( loại)

thế k = 0 -> x = \(\dfrac{-\pi}{6}\) (nhận)

thế k = 1 -> x = \(\dfrac{11\pi}{6}\) ( loại)

vậy tổng nghiệm (1) + (2) là 2 -> Đáp án câu D

#Chúc em học tốt

 

 

NV
14 tháng 4 2022

29.

SMN cân tại S \(\Rightarrow SH\perp MN\) (trung tuyến đồng thời là đường cao trong tam giác cân)

Mà \(\left\{{}\begin{matrix}MN=\left(SMN\right)\cap\left(MNPQ\right)\\\left(SMN\right)\perp\left(MNPQ\right)\end{matrix}\right.\)

\(\Rightarrow SH\perp\left(MNPQ\right)\)

Hay SH là đường cao của chóp

15 tháng 5 2022

Hi bạn, câu 29 này mình có cái cách này dùng cho các bài lim khi rơi vào trường hợp vô định thì bạn dùng quy tắc L'Hospital làm cho nhanh với trường hợp các bài trắc nghiệm như thế này

Ở bài 29 này đang rơi vào dạng \(\dfrac{0}{0}\) nên dùng quy tắc L'Hospital được nè. Bạn làm như sau:

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\x\ge-3\end{matrix}\right.\)

Bước 1: Đạo hàm tử mẫu, ta được: \(\dfrac{\dfrac{1}{2}\left(x+3\right)^{-\dfrac{1}{2}}}{1}\)

Bước 2: Thay điểm cần tính giới hạn: (x=1)

ta sẽ được \(\dfrac{1}{4}\)

Vậy \(lim_{x\rightarrow1}\dfrac{\sqrt{x+3}-2}{x-1}=\dfrac{1}{4}\)

\(\Rightarrow a=1;b=4\)

Vậy S=4a-b=0

NV
19 tháng 4 2022

29.

\(y'=\dfrac{1}{3}x^3-\dfrac{1}{2}\left(m^2+1\right)x^2+\left(m^2-7m+12\right)x\)

\(y''=x^2-\left(m^2+1\right)x+m^2-7m+12\)

Pt \(y''=0\) có 2 nghiệm trái dấu khi và chỉ khi:

\(1.\left(m^2-7m+12\right)< 0\)

\(\Leftrightarrow3< m< 4\)

\(\Rightarrow\) Không có giá trị nguyên nào của m thỏa mãn

30.

\(y'=x^2-2\left(2m+1\right)x-m\ge0;\forall x\)

\(\Leftrightarrow\Delta'=\left(2m+1\right)^2+m\le0\)

\(\Leftrightarrow4m^2+5m+1\le0\)

\(\Leftrightarrow-1\le m\le-\dfrac{1}{4}\)

\(\Rightarrow\) Có 1 giá trị nguyên của m thỏa mãn (\(m=-1\))