Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AD = AE nhé bạn
a) Vì H là trung điểm của BC (gt) nên BH = CH
Xét tam giác ABH và tam giác ACH có:
AB = AC (gt)
AH cạnh chung
BH = CH (chứng minh trên)
=> Tam giác ABH = tam giác ACH (c.c.c) (đpcm)
b) Ta có: góc AHB = góc AHC (vì tam giác ABH = tam giác ACH)
Mà góc AHB + góc AHC = 180o (2 góc kề bù)
=> Góc AHB = góc AHC = 180o : 2 = 90o
=> AH _|_ BC (đpcm)
c) Ta có: AB = AC (gt)
BD = CE (gt)
=> AB + BD = AC + CE
=> AD = AE (đpcm)
d) Xét tam giác ADK và tam giác ADE có:
DH = EK (vì K là trung điểm của DE)
DK cạnh chung
AD = AE (chứng minh trên)
=> Tam giác ADK = tam giác ADE (c.c.c)
=> Góc DAK = góc EAK
Vì tia AK nằm giữa 2 tia AD, AE nên AK là tia phân giác của góc DAE
hay AK là tia phân giác của góc BAC (1)
Lại có: góc BAH = góc CAH (vì tam giác ABH = tam giác ACH)
tia AH nằm giữa 2 tia AB, AC
=> AH là tia phân giác góc BAC (2)
Từ (1), (2) => 3 điểm A, H, K thẳng hàng
Bài 1:
a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A
=> đường trung tuyến AM đồng thời là đường cao
Vậy AM vuông góc BC
c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)
\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)
d) Ta có KB//AM(vì vuông góc với BM
\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)
Xét tam giác KDB và MDA (2 góc đối đỉnh)
\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)
\(\Rightarrow KD=DM\left(1\right)\)
Tam giác ABM vuông tại M có trung tuyến MD
Nên : MD=BD=AD(2)
Từ (1) và (2) ta có : KD=DM=DB=AD
Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)
Nên : Tam giác KAM vuông tại A
Tương tự : Tam giác MAH vuông tại A
Ta có: Qua1 điểm A thuộc AM có 2 đường KA và AH cùng vuông góc với AM
Nên : K,A,H thẳng thàng
Bài 2 :
a) Ta có tam giác DAB=tam giác CEB(c.g.c)
Do : DA=CB(gt)
BE=BA(gt)
\(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))
=> DA=EC
b) Do tam giác DAB=tam giác CEB(ở câu a)
=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)
Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC)
=> \(\widehat{BCE}+\widehat{BCD}=90^0\)
=> DA vuông góc với EC
a, CM tam giác ACH = tam giác KCH
Xét tam giác ACH và tam giác KCH, có:
- AH = KH (H là trung điểm AK)
- góc AHC = góc KHC = 90 độ
- cạnh HC chung
=> tam giác ACH = tam giác KCH (đpcm)
b, Gọi E là trung điểm của BC. Trên tia đối của tía EA lấy điểm D sao cho AE=DE. CM: BD song song với AC
Xét tam giác AEC và tam giác DEB, có:
- AE = DE (giả thiết)
- BE = CE (E là trung điểm BC)
- góc AEC = góc DEB (2 góc đối nhau)
=> tam giác AEC = tam giác DEB
=> góc EAC = góc EDB, góc ECA = góc EBD (góc tương ứng của 2 tam giác bằng nhau)
=> DB // AC (so le trong) (đpcm)
c, EB là phân giác của góc AEK
Xét tam giác EHA và tam giác EHK, có:
- EH chung
- góc EHA = góc EHK = 90 độ
- HA = HK (H là trung điểm AK)
=> tam giác EHA = tam giác EHK
=> EA = EK => tam giác EAK cân tại E
mà H là trung điểm AK
=> EH là trung tuyến, trung tực, phân giác của tam giác cân EAK
Ta có EH là phân giác của góc AEK
mà B,H,E thẳng hàng
=> EB là phân giác của góc AEK (đpcm)
d, Gọi F là trung điểm của KD. I là giao điểm BD và KC. CM: A,F,I thẳng hàng
(chưa nghĩ ra)
a, Xét \(\Delta\)ABD và \(\Delta\)ACE có:
AB=AC( tam giác ABC cân tại A)
\(\widehat{A}\)chung
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE( CH-GN)
b, vì \(\Delta\)ABD=\(\Delta\)ACE\(\Rightarrow\)AD=AE\(\Rightarrow\)tam giác AED cân tại A
Cm: Xét t/giác ABD và t/giác ACE
có góc CEA = góc BDA = 900 (gt)
AB = AC (gt)
góc A : chung
=> t/giác ABD = t/giác ACE (ch - gn)
b) Ta có: t/giác ABD = t/giác ACE (cmt)
=> AE = AD (hai cạnh tương ứng)
=> t/giác AED là t/giác cân tại A
c) Gọi I là giao điểm của AH và ED.
Ta có: AE + EB = AB
AD + DC = AC
và AB = AC (gt); AE = AD (cmt)
=> EB = DC
Do t/giác ABD = t/giác ACE (cm câu a)
=> góc ABD = góc ACE (hai cạnh tương ứng)
Xét t/giác EHB và t/giác DHC
có góc BEH = góc HDC (gt)
EB = DC (cmt)
góc EBH = góc HCD (cmt)
=> t/giác BEH = t/giác DHC (g.c.g)
=> EH = DH (hai cạnh tương ứng)
Xét t/giác AEH và t/giác ADH
có AE = AD (cmt)
góc AEH = góc ADH (gt)
EH = DH (cmt)
=> t/giác AEH = t/giác ADH (c.g.c)
=> góc EAH = góc DAH (hai góc tương ứng)
Xét t/giác AEI và t/giác ADI
có góc EAI = góc DAI (cmt)
AE = AD (cmt)
góc AEI = góc ADI (vì t/giác AED cân)
=> t/giác AEI = t/giác ADI (g.c.g)
=> EI = HD (hai cạnh tương ứng) (1)
=> góc AIE = góc AID (hai góc tương ứng)
Mà góc AEI + góc AID = 1800 (kề bù)
=> 2.góc AEI = 1800
=> góc AEI = 1800 : 2
=> góc AEI = 900
=> AI \(\perp\)ED (2)
Từ (1) và (2) suy ra AI là đường trung trực của ED hay AH là đường trung trực của ED
d) Sửa đề Cm : góc ECB = góc DKC
Ta có: góc BDC + góc KDC = 1800
=> góc KDC = 1800 - góc BDC = 1800 - 900 = 900
Xét t/giác BDC và t/giác KDC
có BD = DK (gt)
góc BDC = góc KDC = 900 (Cmt)
DC : chung
=> t/giác BDC = t/giác KDC (c.g.c)
=> góc K = góc DBC (hai góc tương ứng) (3)
Xét t/giác BEC và t/giác CDB
có góc BDC = góc CDB = 900 (gt)
BC : chung
góc B = góc C (vì t/giác ABC cân)
=> t/giác BEC = t/giác CDB (ch -gn)
=> góc BDE = góc DBC (hai góc tương ứng) (4)
Từ (3) và (4) suy ra góc ECB = góc DKC
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng
a. Xét TG ABH và TG ACH, ta có:
AB=AC(gt), BH=CH (vì H là trung điểm BC), AH: cạnh chung
=> TG ABH= TG ACH (c.c.c).
b. Vì TG ABH= TG ACH (cmt) nên góc AHB= góc AHC (2 góc tương ứng)
Ta có: AHB và AHC là 2 góc kề bù=> AHB+AHC =180o
mà AHB=AHC (cmt) => 2AHB =180o
=> AHB=AHC= 180o/2=90o
mà AH nằm giữa AB và AC=> AH vuông góc BC.
c. Ta có: AD= AB+BD
AE= AC+CE
mà AB=AC(gt), BD=CE(gt) => AD=AE
Vì TG ABH= TG ACH (cmt) => góc BAH= góc CAH ( 2 góc tương ứng)
Xét TG HAD và TG HAE, ta có:
AD=AE (cmt), góc HAB= góc HAE (cmt), AH: cạnh chung
=> TG HAD = TG HAE (c.g.c).