K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2014

a. Xét TG ABH và TG ACH, ta có:

AB=AC(gt), BH=CH (vì H là trung điểm BC), AH: cạnh chung

=> TG ABH= TG ACH (c.c.c).

b. Vì TG ABH= TG ACH (cmt) nên góc AHB= góc AHC (2 góc tương ứng)

Ta có: AHB và AHC là 2 góc kề bù=> AHB+AHC =180o

mà AHB=AHC (cmt) => 2AHB =180o

                               => AHB=AHC= 180o/2=90o

mà AH nằm giữa AB và AC=> AH vuông góc BC.

c. Ta có: AD= AB+BD

             AE= AC+CE

    mà AB=AC(gt), BD=CE(gt) => AD=AE

Vì TG ABH= TG ACH (cmt) => góc BAH= góc CAH ( 2 góc tương ứng)

Xét TG HAD và TG HAE, ta có:

AD=AE (cmt), góc HAB= góc HAE (cmt), AH: cạnh chung

=> TG HAD = TG HAE (c.g.c).

16 tháng 2 2021

AD = AE nhé bạn

H A B C D E K

a) Vì H là trung điểm của BC (gt) nên BH = CH

Xét tam giác ABH và tam giác ACH có:

AB = AC (gt)

AH cạnh chung

BH = CH (chứng minh trên)

=> Tam giác ABH = tam giác ACH (c.c.c)   (đpcm)

b) Ta có: góc AHB = góc AHC (vì tam giác ABH = tam giác ACH)

Mà góc AHB + góc AHC = 180o (2 góc kề bù)

=> Góc AHB = góc AHC = 180o : 2 = 90o

=> AH _|_ BC   (đpcm)

c) Ta có: AB = AC (gt)

              BD = CE (gt)

=> AB + BD = AC + CE

=> AD = AE   (đpcm)

d) Xét tam giác ADK và tam giác ADE có:

DH = EK (vì K là trung điểm của DE)

DK cạnh chung

AD = AE (chứng minh trên)

=> Tam giác ADK = tam giác ADE (c.c.c)

=> Góc DAK = góc EAK

Vì tia AK nằm giữa 2 tia AD, AE nên AK là tia phân giác của góc DAE

hay AK là tia phân giác của góc BAC  (1)

Lại có: góc BAH = góc CAH (vì tam giác ABH = tam giác ACH)

            tia AH nằm giữa 2 tia AB, AC

=> AH là tia phân giác góc BAC  (2)

Từ (1), (2) => 3 điểm A, H, K thẳng hàng

5 tháng 7 2017

A B C D E F

A B C D E

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC

3 tháng 1 2019

a, CM tam giác ACH = tam giác KCH

Xét tam giác ACH và tam giác KCH, có:

- AH = KH (H là trung điểm AK)

- góc AHC = góc KHC = 90 độ

- cạnh HC chung

=> tam giác ACH = tam giác KCH (đpcm)

b, Gọi E là trung điểm của BC. Trên tia đối của tía EA lấy điểm D sao cho AE=DE. CM: BD song song với AC

Xét tam giác AEC và tam giác DEB, có:

- AE = DE (giả thiết)

- BE = CE (E là trung điểm BC)

- góc AEC = góc DEB (2 góc đối nhau)

=> tam giác AEC = tam giác DEB

=> góc EAC = góc EDB, góc ECA = góc EBD (góc tương ứng của 2 tam giác bằng nhau)

=> DB // AC  (so le trong) (đpcm)

c, EB là phân giác của góc AEK

Xét tam giác EHA và tam giác EHK, có:

- EH chung

- góc EHA = góc EHK = 90 độ

- HA = HK (H là trung điểm AK)

=> tam giác EHA = tam giác EHK

=> EA = EK => tam giác EAK cân tại E

mà H là trung điểm AK

=> EH là trung tuyến, trung tực, phân giác của tam giác cân EAK

Ta có EH là phân giác của góc AEK

mà B,H,E thẳng hàng

=> EB là phân giác của góc AEK (đpcm)

d, Gọi F là trung điểm của KD. I là giao điểm BD và KC. CM: A,F,I thẳng hàng

(chưa nghĩ ra)

9 tháng 2 2019

a, Xét \(\Delta\)ABD và \(\Delta\)ACE có:

              AB=AC( tam giác ABC cân tại A)

              \(\widehat{A}\)chung

\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE( CH-GN)

b, vì \(\Delta\)ABD=\(\Delta\)ACE\(\Rightarrow\)AD=AE\(\Rightarrow\)tam giác AED cân tại A

9 tháng 2 2019

A B C E D H I K

Cm: Xét t/giác ABD và t/giác ACE

có góc CEA = góc BDA = 900 (gt)

   AB = AC (gt)

 góc A : chung

=> t/giác ABD = t/giác ACE (ch - gn)

b) Ta có: t/giác ABD = t/giác ACE (cmt)

=> AE = AD (hai cạnh tương ứng)

=> t/giác AED là t/giác cân tại A

c) Gọi I là giao điểm của AH và ED.

Ta có: AE + EB = AB

       AD + DC = AC

và AB = AC (gt); AE = AD (cmt)

=> EB = DC 

Do t/giác ABD = t/giác ACE (cm câu a)

=> góc ABD = góc ACE (hai cạnh tương ứng)

Xét t/giác EHB và t/giác DHC

có góc BEH = góc HDC (gt)

  EB = DC (cmt)

  góc EBH = góc HCD (cmt)

=> t/giác BEH = t/giác DHC (g.c.g)

=> EH = DH (hai cạnh tương ứng)

Xét t/giác AEH và t/giác ADH

có AE = AD (cmt)

 góc AEH = góc ADH (gt)

 EH = DH (cmt)

=> t/giác AEH = t/giác ADH (c.g.c)

=> góc EAH = góc DAH (hai góc tương ứng)

Xét t/giác AEI và t/giác ADI

có góc EAI = góc DAI (cmt)

  AE = AD (cmt)

 góc AEI = góc ADI (vì t/giác AED cân)

=> t/giác AEI = t/giác ADI (g.c.g)

=> EI = HD (hai cạnh tương ứng) (1)

=> góc AIE = góc AID (hai góc tương ứng)

Mà góc AEI + góc AID = 1800 (kề bù)

=> 2.góc AEI = 1800

=> góc AEI = 1800 : 2

=> góc AEI = 900

=> AI \(\perp\)ED (2)

Từ (1) và (2) suy ra AI là đường trung trực của ED hay AH là đường trung trực của ED

d) Sửa đề Cm : góc ECB = góc DKC

Ta có: góc BDC + góc KDC = 1800

=> góc KDC = 1800 - góc BDC = 1800 - 900 = 900

Xét t/giác BDC và t/giác KDC

có BD = DK (gt)

 góc BDC = góc KDC = 900 (Cmt)

 DC : chung

=> t/giác BDC = t/giác KDC (c.g.c)

=> góc K = góc DBC (hai góc tương ứng) (3)

Xét t/giác BEC và t/giác CDB

có góc BDC = góc CDB = 900 (gt)

    BC : chung

  góc B = góc C (vì t/giác ABC cân)

=> t/giác BEC = t/giác CDB (ch -gn)

=> góc BDE = góc DBC (hai góc tương ứng) (4)

Từ (3) và (4) suy ra góc ECB = góc DKC 

24 tháng 2 2020

A B C H E D M S N K I

Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath

c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE  

=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE 

=> \(\Delta\)ABE cân tại B 

=> AB = BE 

d) Ta có: SN vuông AH ; BC vuông AH 

=> SN //BC 

=> NK //MC 

=> ^KNI = ^MCI 

mặt khác có: NK = MC ; IN = IC ( gt)

=> \(\Delta\)NIK = \(\Delta\)CIM

=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o

=> ^CIM + ^KIC = 180o

=> ^KIM = 180o

=>M; I ; K thẳng hàng