\(\hept{\begin{cases}x-y+a=0\\\lef...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

2)

sử dụng phương pháp nhân liên hợp ở pt (1) ta được

\(\hept{\begin{cases}x+\sqrt{2012+x^2}=\sqrt{y^2+2012}-y\\y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x\end{cases}}\)

cộng 2 vế lại được x=-y

rồi sao?? mik đíu hiểu pt 2 lôi z ở đâu

11 tháng 5 2017

2,RA DUOC X=-Y ...THAY VAO PT 2 TA DC Y^2+Z^2 -4Y-4Z +4+4=0...(Y-2)^2 +(Z-2)^2=0...Y=Z=2 , X=-Y=-2

23 tháng 12 2018

\(Taco:\)

\(\left(x+y\right)\left(y+z\right)=187\Leftrightarrow xy+xz+yy+yz=187\)

\(\left(y+z\right)\left(z+x\right)=154\Leftrightarrow yz+xy+zz+xz=154\)

\(\left(z+x\right)\left(x+y\right)=238\Leftrightarrow xz+zy+xx+xy=238\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)+\left(x+z\right)\left(x+y\right)+\left(y+z\right)\left(z+x\right)=579\)

\(\Leftrightarrow xy+zx+yy+yz+yz+xy+zz+xz+xz+zy+xx+xy=579\)

\(\Leftrightarrow3\left(xz+xy+yz\right)+x^2+y^2+z^2=579\)

\(\left(z+x\right)\left(x+y\right)-\left(x+y\right)\left(y+z\right)=51\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x^2-y^2=51\)

\(\left(z+x\right)\left(x+y\right)-\left(y+z\right)\left(x+z\right)=84\)

\(\Leftrightarrow\left(x+z\right)\left(x-z\right)=84\Leftrightarrow x^2-z^2=84\)

\(\Leftrightarrow y^2-z^2=33\)

đến đây tịt

31 tháng 1 2019

ak tớ bt cách giải rồi cần thì ib ns tớ lm :v

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)

8 tháng 2 2020

Áp dụng Cô si cho 2 số dương ta đc:

\(2\sqrt{4a\left(3a+b\right)}\le4a+\left(3a+b\right)=7a+b\)

Tương tự: \(2\sqrt{4b\left(3b+a\right)}\le4b+\left(3b+a\right)=7b+a\)

\(\Rightarrow2\sqrt{4a\left(3a+b\right)}+2\sqrt{4b\left(3b+a\right)}\le8\left(a+b\right)\)

\(\Leftrightarrow\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\le2\left(a+b\right)\)

\(\Leftrightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4a=3a+b\\4b=3b+a\\a,b>0\end{cases}}\Leftrightarrow a=b>0\)

Giải HPT:

\(\hept{\begin{cases}x+y-z=c\\y+z-x=a\\z+x-y=b\end{cases}\Leftrightarrow\hept{\begin{cases}2y=c+a\\2z=a+b\\2x=b+c\end{cases}\Leftrightarrow}}\hept{\begin{cases}y=\frac{c+a}{2}\\x=\frac{a+b}{2}\\x=\frac{b+c}{2}\end{cases}}\)

8 tháng 2 2020

1 ) Áp dụng BĐT Cauchy : 

\(2\sqrt{a\left(3a+b\right)}=\sqrt{4a\left(3a+b\right)}\le\frac{4a+3a+b}{2}\)

Tương tự \(2\sqrt{b\left(3b+a\right)}\le\frac{4b+3b+a}{2}\)

\(\Rightarrow2\left(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\right)\le\frac{8a+8b}{2}=4\left(a+b\right)\)

\(\Rightarrow\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\le2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b>0\)