Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=5+5^2+5^3+....+5^{199}+5^{200}\)
\(\Leftrightarrow5A=5\left(5+5^2+5^3+....+5^{199}+5^{200}\right)\)
\(\Leftrightarrow5A=5^2+5^3+5^4+....+5^{200}+5^{201}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+5^4+....+5^{200}+5^{201}\right)-\left(5+5^2+5^3+....+5^{199}+5^{200}\right)\)
\(\Leftrightarrow4A=5^{201}-5\)
\(\Leftrightarrow A=\frac{5^{201}-5}{4}\)
Đặt \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
\(2A+A=3A=1-\frac{1}{2^6}=\frac{2^6-1}{2^6}< 1\)
\(\Rightarrow3A< 1\Rightarrow A< \frac{1}{3}\)(ĐPCM)
Ta có
n+6 chia hết cho n-3
=> n-3 +9 chia hết cho n-3
Vì n-3 chia hết cho n-3
=> 9 chia hết cho n-3
Xét các ước của 9 để tìm đk n là số tự nhiên
Ta có:
2n+8 chia hết cho n+2
=>2(n+2)+4 chia hết cho n+2
Các phần sau làm tương tự câu trên
Ta có
3n+5 chia hết cho -2n+1
=> 3n+5 chia hết cho 2n-1
=> 6n+10 chia hết cho 2n-1
=>3(2n-1)+13 chia hết cho 2n-1
Phần sau làm tương tự nhé bạn
a) Để â nhận giá trị nguyên
\(\Rightarrow8n-9⋮2n+5\)
\(\Rightarrow8n+20-29⋮2n+5\)
\(\Rightarrow4.\left(2n+5\right)-29⋮2n+5\)
mà \(4.\left(2n+5\right)⋮2n+5\)
\(\Rightarrow-29⋮2n+5\)
\(\Rightarrow2n+5\inƯ\left(-29\right)\)
tự làm nốt nhé, tick nha