K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

Bài 2:

Áp dụng tc dtsbn:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\widehat{A}=3\cdot12^0=36^0\)

Bài 3:

Gọi cd,cr lần lượt là a,b(cm;a,b>0)

Đặt \(\dfrac{a}{5}=\dfrac{b}{3}=k\left(k>0\right)\Rightarrow a=5k;b=3k\)

Mà \(ab=60\Rightarrow15k^2=60\Rightarrow k^2=4\Rightarrow k=2\)

\(\Rightarrow\left\{{}\begin{matrix}a=10\\b=6\end{matrix}\right.\)

Vậy chu vi hcn là \(2\left(a+b\right)=2\cdot16=32\left(cm\right)\)

13 tháng 8 2021

Tính chất dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{5}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{1}{4}\Rightarrow x=\frac{3}{4}\\\frac{y}{5}=\frac{1}{4}\Rightarrow y=\frac{5}{4}\end{cases}}\)

Bài 2:

a: Xét ΔABC có

BI,CI là các đường phân giác

BI cắt CI tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

b: Ta có: \(\widehat{DIB}=\widehat{IBC}\)(hai góc so le trong, DI//BC)

\(\widehat{DBI}=\widehat{IBC}\)(BI là phân giác của góc DBC)

Do đó: \(\widehat{DIB}=\widehat{DBI}\)

=>ΔDIB cân tại D

c: Ta có: \(\widehat{EIC}=\widehat{ICB}\)(hai góc so le trong, EI//BC)

\(\widehat{ECI}=\widehat{ICB}\)(CI là phân giác của góc ECB)

Do đó: \(\widehat{EIC}=\widehat{ECI}\)

=>ΔEIC cân tại E

d: Ta có: ΔDIB cân tại D

=>DB=DI

Ta có: ΔEIC cân tại E

=>EI=EC

Ta có: DI+IE=DE

mà DI=DB

và EC=EI

nên DB+EC=DE

Bài 1:

a: Xét ΔABC có

BE,CF là các đường phân giác

BE cắt CF tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

=>AI là phân giác của góc BAC
b: ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là phân giác của góc ABC)

\(\widehat{ACF}=\widehat{FCB}=\dfrac{\widehat{ACB}}{2}\)(CF là phân giác của góc ACB)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABE}=\widehat{EBC}=\widehat{ACF}=\widehat{FCB}\)

c: ta có: \(\widehat{EBC}=\widehat{FCB}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

d: Xét ΔABE và ΔACF có

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

=>BE=CF

e:

Ta có: ΔAEB=ΔAFC

=>AE=AF

Ta có: AE+EC+AC
AF+FB=AB

mà AE=AF 

và AC=AB

nên EC=FB

Xét ΔFIB và ΔEIC có

FB=EC

\(\widehat{FBI}=\widehat{ECI}\)

BI=CI

Do đó: ΔFIB=ΔEIC

b: \(=8+2\cdot3-7\cdot1.3+3\cdot\dfrac{5}{4}=8.65\)

3 tháng 12 2021

có 1 câu thui ạ ?

 

7 tháng 5 2021

jimmmmmmmmmmmmmmmmmmmmmmmmmmm

20 tháng 7 2021

Bài 5:

Vì \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=-\frac{49}{7}=-7\)

\(\Rightarrow x=-7.10=-70;y=-7.15=-105;z=-7.12=-84\)

Vậy x = -70; y = -105; z = -84

Bài 6:

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{3^2}=\frac{z^2}{4^2}=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2.z^2}{2.16}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)

\(\Rightarrow x^2=4.4=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

\(y^2=9.4=36\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)

\(z^2=4.16=64\Rightarrow\orbr{\begin{cases}z=8\\z=-8\end{cases}}\)

Vậy x = 4; y = 6; z = 8 hoặc x = -4; y = -6; z = -8.

6, TA CÓ :

\(\frac{x^2}{4}\) =\(\frac{y^2}{9}\)=\(\frac{2z^2}{32}\)và x2 -y2 + 2z2 =108

ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU : 

TA CÓ :\(\frac{x^2}{4}\) - \(\frac{y^2}{9}\)\(\frac{2z^2}{32}\)=\(\frac{x^2-y^2+2z^2}{4-9+32}\)=\(\frac{108}{27}=4\)

=> \(x^2=4.4=16\)=> x = \(\sqrt{16}=4\)

\(y^2=9.4=36\Rightarrow y=\sqrt{36}=6\)

\(2z^2=32.4=128\Rightarrow z^2=\frac{128}{2}=64\Rightarrow z=\sqrt{64}=8\)

11 tháng 3 2022

là gì thế

 

8 tháng 8 2021

undefined

Uchiha Itachi